Concat Conditionings with Multiplier (Inspire)¶
Documentation¶
- Class name:
ConcatConditioningsWithMultiplier __Inspire
- Category:
InspirePack/__for_testing
- Output node:
False
This node is designed to concatenate multiple conditioning inputs, each potentially modified by a corresponding multiplier, into a single conditioning output. It primarily serves to enhance or modify the conditioning context for generative models by adjusting the strength of individual conditionings before combining them.
Input types¶
Required¶
conditioning1
- The primary conditioning input to which additional conditionings will be concatenated. This conditioning serves as the base for subsequent modifications and concatenations.
- Comfy dtype:
CONDITIONING
- Python dtype:
list of tuples
Optional¶
multiplier1
- A multiplier to adjust the strength of the primary conditioning input. This allows for fine-tuning the influence of the primary conditioning on the overall output.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
conditioning
- Comfy dtype:
CONDITIONING
- The resulting conditioning after concatenating and adjusting the strength of multiple conditionings. It represents a modified or enhanced context for generative models.
- Python dtype:
list of tuples
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ConcatConditioningsWithMultiplier:
@classmethod
def INPUT_TYPES(s):
flex_inputs = {}
stack = inspect.stack()
if stack[1].function == 'get_input_data':
# bypass validation
for x in range(0, 100):
flex_inputs[f"multiplier{x}"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
else:
flex_inputs["multiplier1"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
return {
"required": {"conditioning1": ("CONDITIONING",), },
"optional": flex_inputs
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "doit"
CATEGORY = "InspirePack/__for_testing"
def doit(self, **kwargs):
if "ConditioningMultiplier_PoP" in nodes.NODE_CLASS_MAPPINGS:
obj = nodes.NODE_CLASS_MAPPINGS["ConditioningMultiplier_PoP"]()
else:
utils.try_install_custom_node('https://github.com/picturesonpictures/comfy_PoP',
"To use 'ConcatConditioningsWithMultiplier' node, 'comfy_PoP' extension is required.")
raise Exception("'comfy_PoP' node isn't installed.")
conditioning_to = kwargs['conditioning1']
conditioning_to = obj.multiply_conditioning_strength(conditioning=conditioning_to, multiplier=float(kwargs['multiplier1']))[0]
out = None
for k, conditioning_from in kwargs.items():
if k == 'conditioning1' or not k.startswith('conditioning'):
continue
out = []
if len(conditioning_from) > 1:
print(f"Warning: ConcatConditioningsWithMultiplier {k} contains more than 1 cond, only the first one will actually be applied to conditioning1.")
mkey = 'multiplier' + k[12:]
multiplier = float(kwargs[mkey])
conditioning_from = obj.multiply_conditioning_strength(conditioning=conditioning_from, multiplier=multiplier)[0]
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
tw = torch.cat((t1, cond_from), 1)
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
conditioning_to = out
if out is None:
return (kwargs['conditioning1'],)
else:
return (out,)