HED Preprocessor Provider (SEGS)¶
Documentation¶
- Class name:
HEDPreprocessor_Provider_for_SEGS __Inspire
- Category:
InspirePack/SEGS/ControlNet
- Output node:
False
This node provides a preprocessor for SEGS (semantic edge guided synthesis) using the HED (Holistically-Nested Edge Detection) algorithm. It is designed to preprocess images by detecting edges in a holistic manner, enhancing the input for SEGS applications.
Input types¶
Required¶
safe
- Determines whether the preprocessing should be performed in a safe mode, which may affect the edge detection results.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Output types¶
segs_preprocessor
- Comfy dtype:
SEGS_PREPROCESSOR
- The output is a preprocessed object ready for SEGS applications, specifically tailored for edge detection enhancements.
- Python dtype:
object
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class HEDPreprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"safe": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"})
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, safe):
obj = HED_Preprocessor_wrapper(safe, "HEDPreprocessor")
return (obj, )