KSamplerAdvanced (inspire)¶
Documentation¶
- Class name:
KSamplerAdvanced __Inspire
- Category:
InspirePack/a1111_compat
- Output node:
False
This node is an advanced version of the KSampler tailored for the Inspire pack, designed to enhance sampling strategies with more sophisticated algorithms and options. It aims to provide users with enhanced control and flexibility over the sampling process, enabling the creation of more refined and complex generative art.
Input types¶
Required¶
model
- Specifies the model used for the sampling process, serving as the core component that drives the generation of outputs.
- Comfy dtype:
MODEL
- Python dtype:
str
add_noise
- Determines whether noise should be added to the sampling process, influencing the diversity and uniqueness of the generated results.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
noise_seed
- Sets the seed for noise generation, ensuring reproducibility and consistency in the sampling outcomes.
- Comfy dtype:
INT
- Python dtype:
int
steps
- Defines the number of steps to be taken in the sampling process, affecting the detail and quality of the generated outputs.
- Comfy dtype:
INT
- Python dtype:
int
cfg
- Controls the configuration for the sampling, adjusting parameters such as creativity and variance in the generated results.
- Comfy dtype:
FLOAT
- Python dtype:
float
sampler_name
- Selects the specific sampler algorithm to be used, allowing for customization of the sampling strategy.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scheduler
- Chooses the scheduler for controlling the sampling process, further customizing the generation approach.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
positive
- Specifies the positive conditioning to guide the sampling towards desired themes or concepts.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
negative
- Indicates the negative conditioning to avoid certain themes or elements in the generated results.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
latent_image
- Provides the initial latent image to be used in the sampling process, serving as a starting point for generation.
- Comfy dtype:
LATENT
- Python dtype:
str
start_at_step
- Determines the starting step of the sampling process, allowing for mid-process interventions or adjustments.
- Comfy dtype:
INT
- Python dtype:
int
end_at_step
- Specifies the ending step of the sampling process, defining the scope of the generation.
- Comfy dtype:
INT
- Python dtype:
int
noise_mode
- Selects the mode of noise application, influencing the texture and quality of the generated images.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
return_with_leftover_noise
- Decides whether to include leftover noise in the final output, affecting the final visual appearance.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
batch_seed_mode
- Determines the mode for seed progression throughout the batch, affecting the variation and consistency of generated samples.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
variation_seed
- Sets the seed for variation, enabling controlled diversity in the sampling outcomes.
- Comfy dtype:
INT
- Python dtype:
int
variation_strength
- Controls the strength of variation applied to the sampling, adjusting the degree of diversity in the results.
- Comfy dtype:
FLOAT
- Python dtype:
float
Optional¶
variation_method
- Specifies the method of applying variation, influencing how diversity is introduced into the sampling process.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
noise_opt
- Specifies the optional noise parameters to be used in the sampling process, allowing for further customization of noise characteristics.
- Comfy dtype:
NOISE
- Python dtype:
str
scheduler_func_opt
- Optionally provides a custom scheduling function, offering advanced control over the sampling dynamics.
- Comfy dtype:
SCHEDULER_FUNC
- Python dtype:
str
Output types¶
latent
- Comfy dtype:
LATENT
- Outputs the final latent representation after the sampling process, reflecting the culmination of the applied conditions and configurations.
- Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class KSamplerAdvanced_inspire:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (common.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
"batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{
"variation_method": (["linear", "slerp"],),
"noise_opt": ("NOISE",),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "doit"
CATEGORY = "InspirePack/a1111_compat"
@staticmethod
def sample(model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise,
denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None, callback=None, variation_method="linear", scheduler_func_opt=None):
force_full_denoise = True
if return_with_leftover_noise:
force_full_denoise = False
disable_noise = False
if not add_noise:
disable_noise = True
return inspire_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step,
force_full_denoise=force_full_denoise, noise_mode=noise_mode, incremental_seed_mode=batch_seed_mode,
variation_seed=variation_seed, variation_strength=variation_strength, noise=noise_opt, callback=callback, variation_method=variation_method,
scheduler_func=scheduler_func_opt)
def doit(self, *args, **kwargs):
return (self.sample(*args, **kwargs)[0],)