KSamplerAdvanced [pipe] (inspire)¶
Documentation¶
- Class name:
KSamplerAdvancedPipe __Inspire
- Category:
InspirePack/a1111_compat
- Output node:
False
This node is designed for advanced sampling in generative models, focusing on creating or modifying latent images through a comprehensive set of parameters. It integrates various components such as noise addition, seed manipulation, and conditioning adjustments to refine the generation process, aiming to produce high-quality, customizable results.
Input types¶
Required¶
basic_pipe
- A tuple containing the model, clip, VAE, and positive and negative conditioning components, serving as the foundational setup for the sampling process.
- Comfy dtype:
BASIC_PIPE
- Python dtype:
tuple
add_noise
- A boolean flag indicating whether noise should be added to the generation process, affecting the diversity and quality of the output.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
noise_seed
- An integer seed specifically for noise generation, contributing to the variability and uniqueness of the generated images.
- Comfy dtype:
INT
- Python dtype:
int
steps
- The number of steps to perform in the sampling process, affecting the detail and quality of the generated images.
- Comfy dtype:
INT
- Python dtype:
int
cfg
- A configuration parameter that influences the sampling behavior, potentially affecting the style and characteristics of the output.
- Comfy dtype:
FLOAT
- Python dtype:
float
sampler_name
- The name of the sampler to use, determining the specific sampling algorithm applied.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scheduler
- Specifies the scheduler for controlling the sampling process, affecting the progression of image generation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
latent_image
- The initial latent image to be modified or enhanced through the sampling process.
- Comfy dtype:
LATENT
- Python dtype:
torch.Tensor
start_at_step
- The step at which to start the sampling process, allowing for control over the generation's initiation point.
- Comfy dtype:
INT
- Python dtype:
int
end_at_step
- The final step of the sampling process, defining the endpoint of image generation.
- Comfy dtype:
INT
- Python dtype:
int
noise_mode
- Determines the mode of noise application, influencing the texture and quality of the output.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
return_with_leftover_noise
- A flag indicating whether to return the image with any residual noise, affecting the final image's appearance.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
batch_seed_mode
- Specifies the mode for seed generation in batch processing, impacting the diversity of generated images.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
variation_seed
- An optional seed for introducing variations, allowing for controlled randomness in the output.
- Comfy dtype:
INT
- Python dtype:
int
variation_strength
- Determines the strength of the applied variations, affecting the degree of change from the original image.
- Comfy dtype:
FLOAT
- Python dtype:
float
Optional¶
noise_opt
- Optional noise parameters for further customization of the noise application process.
- Comfy dtype:
NOISE
- Python dtype:
dict
scheduler_func_opt
- An optional scheduler function for advanced control over the sampling schedule.
- Comfy dtype:
SCHEDULER_FUNC
- Python dtype:
function
Output types¶
latent
- Comfy dtype:
LATENT
- Represents the generated or modified latent image, showcasing the effectiveness of the sampling process.
- Python dtype:
torch.Tensor
- Comfy dtype:
vae
- Comfy dtype:
VAE
- The VAE component used in the sampling process, potentially modified or utilized as part of the generation.
- Python dtype:
torch.nn.Module
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class KSamplerAdvanced_inspire_pipe:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"basic_pipe": ("BASIC_PIPE",),
"add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (common.SCHEDULERS, ),
"latent_image": ("LATENT", ),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
"batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{
"noise_opt": ("NOISE",),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("LATENT", "VAE", )
FUNCTION = "sample"
CATEGORY = "InspirePack/a1111_compat"
def sample(self, basic_pipe, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise,
denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None, scheduler_func_opt=None):
model, clip, vae, positive, negative = basic_pipe
latent = KSamplerAdvanced_inspire().sample(model=model, add_noise=add_noise, noise_seed=noise_seed,
steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler,
positive=positive, negative=negative, latent_image=latent_image,
start_at_step=start_at_step, end_at_step=end_at_step,
noise_mode=noise_mode, return_with_leftover_noise=return_with_leftover_noise,
denoise=denoise, batch_seed_mode=batch_seed_mode, variation_seed=variation_seed,
variation_strength=variation_strength, noise_opt=noise_opt, scheduler_func_opt=scheduler_func_opt)[0]
return latent, vae