KSampler [pipe] (inspire)¶
Documentation¶
- Class name:
KSamplerPipe __Inspire
- Category:
InspirePack/a1111_compat
- Output node:
False
The KSamplerPipe //Inspire node is designed to facilitate the sampling process within the Inspire Pack framework, leveraging advanced sampling techniques to generate or manipulate latent representations of data. This node acts as a conduit for integrating various sampling strategies, enhancing the flexibility and efficiency of generating new, inspired content or variations thereof.
Input types¶
Required¶
basic_pipe
- Represents the core components required for the sampling process, including models and configurations, crucial for generating or manipulating latent representations.
- Comfy dtype:
BASIC_PIPE
- Python dtype:
tuple
seed
- A seed value to ensure reproducibility of the sampling process, allowing for consistent generation of content across different runs.
- Comfy dtype:
INT
- Python dtype:
int
steps
- Defines the number of steps to be taken in the sampling process, affecting the detail and quality of the generated content.
- Comfy dtype:
INT
- Python dtype:
int
cfg
- Configuration settings for the sampling process, dictating how the sampler operates and influences the generation or manipulation of content.
- Comfy dtype:
FLOAT
- Python dtype:
float
sampler_name
- Specifies the particular sampling strategy to be used, enabling customization of the sampling process based on specific requirements or preferences.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scheduler
- A scheduler to control the sampling process, providing a mechanism to adjust sampling parameters dynamically over time.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
object
latent_image
- The initial latent representation to be used as a starting point for the sampling process, which can be manipulated or enhanced through sampling.
- Comfy dtype:
LATENT
- Python dtype:
object
denoise
- A parameter to control the level of denoising applied during the sampling process, affecting the clarity and quality of the generated content.
- Comfy dtype:
FLOAT
- Python dtype:
float
noise_mode
- Determines how noise is applied during the sampling process, influencing the variation and uniqueness of the generated content.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
batch_seed_mode
- Controls how seeds are managed across batches in the sampling process, affecting the diversity and reproducibility of generated content.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
variation_seed
- An optional seed for introducing variations in the sampling process, allowing for the creation of diverse content from a single initial representation.
- Comfy dtype:
INT
- Python dtype:
int
variation_strength
- Determines the strength of the variations introduced by the variation_seed, affecting the degree of difference from the original content.
- Comfy dtype:
FLOAT
- Python dtype:
float
Optional¶
scheduler_func_opt
- An optional scheduler function to further customize the sampling process, providing additional control over how sampling parameters are adjusted.
- Comfy dtype:
SCHEDULER_FUNC
- Python dtype:
object
Output types¶
latent
- Comfy dtype:
LATENT
- The resulting latent representation after the sampling process, which can be used for further generation or manipulation of content.
- Python dtype:
object
- Comfy dtype:
vae
- Comfy dtype:
VAE
- The variational autoencoder used in the sampling process, which can be utilized for additional content generation or manipulation tasks.
- Python dtype:
object
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class KSampler_inspire_pipe:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"basic_pipe": ("BASIC_PIPE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (common.SCHEDULERS, ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
"batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional":
{
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("LATENT", "VAE")
FUNCTION = "sample"
CATEGORY = "InspirePack/a1111_compat"
def sample(self, basic_pipe, seed, steps, cfg, sampler_name, scheduler, latent_image, denoise, noise_mode, batch_seed_mode="comfy",
variation_seed=None, variation_strength=None, scheduler_func_opt=None):
model, clip, vae, positive, negative = basic_pipe
latent = inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, incremental_seed_mode=batch_seed_mode,
variation_seed=variation_seed, variation_strength=variation_strength, scheduler_func=scheduler_func_opt)[0]
return latent, vae