Regional Conditioning By Color Mask (Inspire)¶
Documentation¶
- Class name:
RegionalConditioningColorMask __Inspire
- Category:
InspirePack/Regional
- Output node:
False
This node specializes in applying regional conditioning to an image based on a specified color mask. It combines textual prompts with visual cues from a color mask to generate conditioning that is spatially aware, enhancing the relevance and specificity of the generated content within designated areas.
Input types¶
Required¶
clip
- A CLIP model identifier used for encoding the textual prompt into a format suitable for conditioning. It plays a crucial role in aligning the text with the visual content.
- Comfy dtype:
CLIP
- Python dtype:
str
color_mask
- An image serving as a mask, where a specific color defines the region of interest for conditioning. This mask guides where the conditioning should be applied.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
mask_color
- The color value used to identify the region of interest within the color mask. It determines which parts of the image are affected by the conditioning.
- Comfy dtype:
STRING
- Python dtype:
str
strength
- A scalar value that adjusts the intensity of the conditioning effect within the specified region. It influences how strongly the conditioning is applied.
- Comfy dtype:
FLOAT
- Python dtype:
float
set_cond_area
- Defines the area of conditioning, allowing for either default application or focusing on the bounds of the mask. This choice affects how the conditioning is spatially distributed.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
list
prompt
- The textual prompt that is encoded and integrated with the visual conditioning. It provides the thematic direction for the content generation.
- Comfy dtype:
STRING
- Python dtype:
str
Output types¶
conditioning
- Comfy dtype:
CONDITIONING
- The resulting conditioning data, tailored to the specified region and prompt, ready for further processing in content generation.
- Python dtype:
torch.Tensor
- Comfy dtype:
mask
- Comfy dtype:
MASK
- The processed mask that delineates the region of interest for the applied conditioning.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class RegionalConditioningColorMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip": ("CLIP", ),
"color_mask": ("IMAGE",),
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
"prompt": ("STRING", {"multiline": True, "placeholder": "prompt"}),
},
}
RETURN_TYPES = ("CONDITIONING", "MASK")
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(clip, color_mask, mask_color, strength, set_cond_area, prompt):
mask = color_to_mask(color_mask, mask_color)
conditioning = nodes.CLIPTextEncode().encode(clip, prompt)[0]
conditioning = nodes.ConditioningSetMask().append(conditioning, mask, set_cond_area, strength)[0]
return conditioning, mask