Regional Conditioning Simple (Inspire)¶
Documentation¶
- Class name:
RegionalConditioningSimple __Inspire
- Category:
InspirePack/Regional
- Output node:
False
This node specializes in applying regional conditioning to an input based on a specified mask, strength, and textual prompt. It leverages CLIP text encoding and mask-based conditioning to enhance or modify specific regions of an input according to the given prompt, allowing for targeted adjustments or enhancements.
Input types¶
Required¶
clip
- The CLIP model to be used for text encoding, which plays a crucial role in interpreting the prompt and applying the corresponding conditioning.
- Comfy dtype:
CLIP
- Python dtype:
str
mask
- A mask that defines the region to apply the conditioning to, determining where the effects of the prompt will be localized.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
strength
- Defines the intensity of the applied conditioning, allowing for fine-tuning how strongly the prompt influences the specified region.
- Comfy dtype:
FLOAT
- Python dtype:
float
set_cond_area
- Specifies how the conditioning area is determined, either using default settings or based on mask bounds, affecting the scope of the applied conditioning.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
List[str]
prompt
- The textual prompt that guides the conditioning process, directly influencing the nature of the applied adjustments.
- Comfy dtype:
STRING
- Python dtype:
str
Output types¶
conditioning
- Comfy dtype:
CONDITIONING
- The result of the conditioning process, tailored to the specified region, strength, and prompt, ready for further processing or application.
- Python dtype:
List[Tuple[torch.Tensor, Dict[str, Any]]]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class RegionalConditioningSimple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip": ("CLIP", ),
"mask": ("MASK",),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
"prompt": ("STRING", {"multiline": True, "placeholder": "prompt"}),
},
}
RETURN_TYPES = ("CONDITIONING", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(clip, mask, strength, set_cond_area, prompt):
conditioning = nodes.CLIPTextEncode().encode(clip, prompt)[0]
conditioning = nodes.ConditioningSetMask().append(conditioning, mask, set_cond_area, strength)[0]
return (conditioning, )