Skip to content

Select Nth Mask (Inspire)

Documentation

  • Class name: SelectNthMask __Inspire
  • Category: InspirePack/Util
  • Output node: False

The SelectNthMask node is designed to select a specific mask from a batch of masks based on a given index. It abstracts the functionality of indexing into a collection of masks and retrieving a single mask, which can be particularly useful in workflows that require manipulation or analysis of individual masks within a larger dataset.

Input types

Required

  • masks
    • The collection of masks from which a specific mask is to be selected. It plays a crucial role in determining the output by specifying the batch of available masks.
    • Comfy dtype: MASK
    • Python dtype: torch.Tensor
  • idx
    • The index of the mask to be selected from the batch. This parameter dictates which mask is retrieved, allowing for targeted manipulation or analysis within a sequence of masks.
    • Comfy dtype: INT
    • Python dtype: int

Output types

  • mask
    • Comfy dtype: MASK
    • The mask selected from the input batch based on the specified index. It represents a single mask extracted for further processing or analysis.
    • Python dtype: torch.Tensor

Usage tips

  • Infra type: GPU
  • Common nodes: unknown

Source code

class SelectNthMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "masks": ("MASK",),
                    "idx": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
                    },
                }

    RETURN_TYPES = ("MASK",)
    FUNCTION = "doit"
    CATEGORY = "InspirePack/Util"

    def doit(self, masks, idx):
        return (masks[idx].unsqueeze(0),)