ToIPAdapterPipe (Inspire)¶
Documentation¶
- Class name:
ToIPAdapterPipe __Inspire
- Category:
InspirePack/Util
- Output node:
False
The ToIPAdapterPipe node is designed to create a pipeline that integrates various components such as IP adapters, models, and optional vision and face recognition enhancements into a unified processing flow. This setup facilitates the adaptation and enhancement of input data or models for further processing or analysis.
Input types¶
Required¶
ipadapter
- The 'ipadapter' parameter is crucial for specifying the IP adapter component to be used in the pipeline, serving as the foundational element for data or model adaptation.
- Comfy dtype:
IPADAPTER
- Python dtype:
str
model
- The 'model' parameter identifies the specific model to be integrated into the pipeline, enabling its adaptation or enhancement through the IP adapter.
- Comfy dtype:
MODEL
- Python dtype:
str
Optional¶
clip_vision
- The 'clip_vision' parameter optionally adds vision processing capabilities to the pipeline, leveraging CLIP models for enhanced visual understanding.
- Comfy dtype:
CLIP_VISION
- Python dtype:
str
insightface
- The 'insightface' parameter optionally incorporates face recognition technology into the pipeline, providing advanced facial analysis features.
- Comfy dtype:
INSIGHTFACE
- Python dtype:
str
Output types¶
ipadapter_pipe
- Comfy dtype:
IPADAPTER_PIPE
- This output represents the assembled pipeline, encapsulating the integrated IP adapter, model, and any optional enhancements for vision and face recognition.
- Python dtype:
tuple
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ToIPAdapterPipe:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ipadapter": ("IPADAPTER", ),
"model": ("MODEL",),
},
"optional": {
"clip_vision": ("CLIP_VISION",),
"insightface": ("INSIGHTFACE",),
}
}
RETURN_TYPES = ("IPADAPTER_PIPE",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Util"
@staticmethod
def doit(ipadapter, model, clip_vision, insightface=None):
pipe = ipadapter, model, clip_vision, insightface, lambda x: x
return (pipe,)