Load Instance PositionNet Model¶
Documentation¶
- Class name:
LoadInstancePositionNetModel
- Category:
instance/loaders
- Output node:
False
This node is designed to load the PositionNet model, a component of the instance diffusion framework, by reading a specified model file and applying necessary configurations. It facilitates the initialization of PositionNet with predefined parameters and the option to include segmentation information, thereby preparing the model for subsequent instance-based processing tasks.
Input types¶
Required¶
model_filename
- Specifies the filename of the PositionNet model to be loaded. This parameter is crucial for identifying and retrieving the correct model file from a predefined directory.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
use_segs
- Determines whether segmentation information should be utilized in the PositionNet model configuration. This boolean flag allows for flexible adaptation of the model based on the presence of segmentation data.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Output types¶
positionnet
- Comfy dtype:
POSITIONNET
- The loaded PositionNet model, ready for use in instance-based processing tasks. This output encapsulates the model initialized with the specified configurations.
- Python dtype:
torch.nn.Module
- Comfy dtype:
fusers
- Comfy dtype:
FUSERS
- The loaded fusers model, which is part of the instance diffusion framework, ready for integration with other components.
- Python dtype:
torch.nn.Module
- Comfy dtype:
scaleu
- Comfy dtype:
SCALEU
- The loaded ScaleU model, another component of the instance diffusion framework, prepared for use in scaling and processing instances.
- Python dtype:
torch.nn.Module
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class LoadInstancePositionNetNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model_filename": (get_model_list(constants.INSTANCE_POSITIONNET_DIR),),
"use_segs": ("BOOLEAN", {"default": True}),
}}
RETURN_TYPES = ("POSITIONNET", "FUSERS", "SCALEU",)
FUNCTION = "load_model"
CATEGORY = "instance/loaders"
def load_model(self, model_filename: str, use_segs: bool):
checkpoint = load_checkpoint(
constants.INSTANCE_POSITIONNET_DIR, model_filename)
params = get_positionnet_default_params()
params["use_segs"] = use_segs
model = prepare_positionnet(checkpoint, params)
positionnet = {
'model': model,
}
return (positionnet,)