ConditioningSetMaskAndCombine3¶
Documentation¶
- Class name:
ConditioningSetMaskAndCombine3
- Category:
KJNodes/masking/conditioning
- Output node:
False
This node is designed to apply a set of masks to conditioning data, potentially modifying the conditioning area based on specified parameters, and then combine these conditioned elements into a single output. It focuses on enhancing or altering the conditioning process by applying multiple masks with varying strengths and areas, facilitating complex conditioning scenarios.
Input types¶
Required¶
positive_i
- Specifies a set of positive conditioning elements to be masked and combined. The strength and area of the mask applied to these elements can be adjusted, affecting the final conditioning output.
- Comfy dtype:
CONDITIONING
- Python dtype:
List[torch.Tensor]
negative_i
- Specifies a set of negative conditioning elements to be masked and combined. Similar to positive inputs, the mask's strength and area settings influence the conditioning outcome.
- Comfy dtype:
CONDITIONING
- Python dtype:
List[torch.Tensor]
mask_i
- The mask applied to the conditioning elements. It defines the area and intensity of the conditioning effect.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
mask_i_strength
- Defines the strength of the mask applied to the conditioning elements, affecting the intensity of the conditioning.
- Comfy dtype:
FLOAT
- Python dtype:
float
set_cond_area
- Determines whether to set the conditioning area to the bounds of the mask or use a default setting, influencing how the mask is applied.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Output types¶
combined_positive
- Comfy dtype:
CONDITIONING
- The combined result of positive conditioning elements after mask application and processing.
- Python dtype:
List[torch.Tensor]
- Comfy dtype:
combined_negative
- Comfy dtype:
CONDITIONING
- The combined result of negative conditioning elements after mask application and processing.
- Python dtype:
List[torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ConditioningSetMaskAndCombine3:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, positive_3, negative_2, negative_3, mask_1, mask_2, mask_3, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in positive_3:
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
for t in negative_3:
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
return (c, c2)