Cross Fade Images¶
Documentation¶
- Class name:
CrossFadeImages
- Category:
KJNodes/image
- Output node:
False
The CrossFadeImages node is designed to blend two sequences of images together over a specified number of frames, using a variety of easing functions to control the transition dynamics. This node allows for the creation of smooth transitions between images, making it ideal for generating animations or video effects where a gradual change from one image set to another is desired.
Input types¶
Required¶
images_i
- unknown
- Comfy dtype:
IMAGE
- Python dtype:
unknown
interpolation
- Specifies the easing function to be used for the transition, allowing for various types of dynamic effects such as linear, ease-in, ease-out, and more complex functions like bounce or elastic.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
transition_start_index
- The index in the image sequences where the transition begins, allowing for precise control over the timing of the crossfade effect.
- Comfy dtype:
INT
- Python dtype:
int
transitioning_frames
- The number of frames over which the transition occurs, defining the length of the crossfade effect.
- Comfy dtype:
INT
- Python dtype:
int
start_level
- The initial alpha value for blending the images at the start of the transition, providing control over the beginning transparency level.
- Comfy dtype:
FLOAT
- Python dtype:
float
end_level
- The final alpha value for blending the images at the end of the transition, allowing for adjustment of the ending transparency level.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
image
- Comfy dtype:
IMAGE
- The resulting sequence of images after applying the crossfade transition, combining elements of both input sequences into a single smooth animation.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class CrossFadeImages:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crossfadeimages"
CATEGORY = "KJNodes/image"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images_1": ("IMAGE",),
"images_2": ("IMAGE",),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
"transition_start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
"start_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
"end_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
},
}
def crossfadeimages(self, images_1, images_2, transition_start_index, transitioning_frames, interpolation, start_level, end_level):
def crossfade(images_1, images_2, alpha):
crossfade = (1 - alpha) * images_1 + alpha * images_2
return crossfade
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
def bounce(t):
if t < 0.5:
return self.ease_out(t * 2) * 0.5
else:
return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5
def elastic(t):
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
def glitchy(t):
return t + 0.1 * math.sin(40 * t)
def exponential_ease_out(t):
return 1 - (1 - t) ** 4
easing_functions = {
"linear": lambda t: t,
"ease_in": ease_in,
"ease_out": ease_out,
"ease_in_out": ease_in_out,
"bounce": bounce,
"elastic": elastic,
"glitchy": glitchy,
"exponential_ease_out": exponential_ease_out,
}
crossfade_images = []
alphas = torch.linspace(start_level, end_level, transitioning_frames)
for i in range(transitioning_frames):
alpha = alphas[i]
image1 = images_1[i + transition_start_index]
image2 = images_2[i + transition_start_index]
easing_function = easing_functions.get(interpolation)
alpha = easing_function(alpha) # Apply the easing function to the alpha value
crossfade_image = crossfade(image1, image2, alpha)
crossfade_images.append(crossfade_image)
# Convert crossfade_images to tensor
crossfade_images = torch.stack(crossfade_images, dim=0)
# Get the last frame result of the interpolation
last_frame = crossfade_images[-1]
# Calculate the number of remaining frames from images_2
remaining_frames = len(images_2) - (transition_start_index + transitioning_frames)
# Crossfade the remaining frames with the last used alpha value
for i in range(remaining_frames):
alpha = alphas[-1]
image1 = images_1[i + transition_start_index + transitioning_frames]
image2 = images_2[i + transition_start_index + transitioning_frames]
easing_function = easing_functions.get(interpolation)
alpha = easing_function(alpha) # Apply the easing function to the alpha value
crossfade_image = crossfade(image1, image2, alpha)
crossfade_images = torch.cat([crossfade_images, crossfade_image.unsqueeze(0)], dim=0)
# Append the beginning of images_1
beginning_images_1 = images_1[:transition_start_index]
crossfade_images = torch.cat([beginning_images_1, crossfade_images], dim=0)
return (crossfade_images, )