Float To Sigmas¶
Documentation¶
- Class name:
FloatToSigmas
- Category:
KJNodes/noise
- Output node:
False
Transforms a list of float values into a tensor of sigmas, facilitating the conversion of numerical data into a format suitable for noise generation and manipulation within neural networks.
Input types¶
Required¶
float_list
- A list of float values to be converted into a sigmas tensor. This input is crucial for defining the specific noise levels to be applied in the neural network's processing.
- Comfy dtype:
FLOAT
- Python dtype:
List[float]
Output types¶
SIGMAS
- Comfy dtype:
SIGMAS
- A tensor of sigmas derived from the input list of float values, used for noise generation and manipulation in neural network operations.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class FloatToSigmas:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"float_list": ("FLOAT", {"default": 0.0, "forceInput": True}),
}
}
RETURN_TYPES = ("SIGMAS",)
RETURN_NAMES = ("SIGMAS",)
CATEGORY = "KJNodes/noise"
FUNCTION = "customsigmas"
DESCRIPTION = """
Creates a sigmas tensor from list of float values.
"""
def customsigmas(self, float_list):
return torch.tensor(float_list, dtype=torch.float32),