Intrinsic Lora Sampling¶
Documentation¶
- Class name:
Intrinsic_lora_sampling
- Category:
KJNodes
- Output node:
False
This node enables the application of intrinsic LoRAs (Low-Rank Adaptations) to models for specific tasks such as depth map generation, surface normal estimation, albedo, and shading. It leverages LoRAs to modify the behavior of pre-trained models without extensive retraining, focusing on enhancing or altering the model's output based on the task at hand.
Input types¶
Required¶
model
- The model to which the intrinsic LoRA will be applied. It serves as the base for modifications and enhancements specific to the desired task.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
lora_name
- The name of the LoRA to be applied, selected from a predefined list of available intrinsic LoRAs.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
task
- Specifies the task for which the model's output is being adapted, such as depth map generation or surface normal estimation. The default task is depth map generation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
text
- A text prompt that guides the model's adaptation process for the specified task, enhancing the relevance of the output to the input text.
- Comfy dtype:
STRING
- Python dtype:
str
clip
- A CLIP model used for encoding the text prompt into a format that guides the adaptation process.
- Comfy dtype:
CLIP
- Python dtype:
torch.nn.Module
vae
- A VAE (Variational Autoencoder) model used for encoding or decoding the samples during the adaptation process.
- Comfy dtype:
VAE
- Python dtype:
torch.nn.Module
per_batch
- The number of samples processed per batch, affecting the efficiency and speed of the adaptation process.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
image
- An optional input image that can be used as a basis for the adaptation process, providing a visual context.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
optional_latent
- An optional latent representation that can be used instead of generating one from an input image, offering a shortcut in the adaptation process.
- Comfy dtype:
LATENT
- Python dtype:
Dict[str, torch.Tensor]
Output types¶
image
- Comfy dtype:
IMAGE
- The output image after applying the intrinsic LoRA, adapted for the specified task.
- Python dtype:
torch.Tensor
- Comfy dtype:
latent
- Comfy dtype:
LATENT
- The latent representation of the output image, providing a deeper insight into the model's adaptation process.
- Python dtype:
Dict[str, torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class Intrinsic_lora_sampling:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"lora_name": (folder_paths.get_filename_list("intrinsic_loras"), ),
"task": (
[
'depth map',
'surface normals',
'albedo',
'shading',
],
{
"default": 'depth map'
}),
"text": ("STRING", {"multiline": True, "default": ""}),
"clip": ("CLIP", ),
"vae": ("VAE", ),
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
},
"optional": {
"image": ("IMAGE",),
"optional_latent": ("LATENT",),
},
}
RETURN_TYPES = ("IMAGE", "LATENT",)
FUNCTION = "onestepsample"
CATEGORY = "KJNodes"
DESCRIPTION = """
Sampler to use the intrinsic loras:
https://github.com/duxiaodan/intrinsic-lora
These LoRAs are tiny and thus included
with this node pack.
"""
def onestepsample(self, model, lora_name, clip, vae, text, task, per_batch, image=None, optional_latent=None):
pbar = ProgressBar(3)
if optional_latent is None:
image_list = []
for start_idx in range(0, image.shape[0], per_batch):
sub_pixels = vae.vae_encode_crop_pixels(image[start_idx:start_idx+per_batch])
image_list.append(vae.encode(sub_pixels[:,:,:,:3]))
sample = torch.cat(image_list, dim=0)
else:
sample = optional_latent["samples"]
noise = torch.zeros(sample.size(), dtype=sample.dtype, layout=sample.layout, device="cpu")
prompt = task + "," + text
positive, = CLIPTextEncode.encode(self, clip, prompt)
negative = positive #negative shouldn't do anything in this scenario
pbar.update(1)
#custom model sampling to pass latent through as it is
class X0_PassThrough(comfy.model_sampling.EPS):
def calculate_denoised(self, sigma, model_output, model_input):
return model_output
def calculate_input(self, sigma, noise):
return noise
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
sampling_type = X0_PassThrough
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
#load lora
model_clone = model.clone()
lora_path = folder_paths.get_full_path("intrinsic_loras", lora_name)
lora = load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_clone_with_lora = comfy.sd.load_lora_for_models(model_clone, None, lora, 1.0, 0)[0]
model_clone_with_lora.add_object_patch("model_sampling", model_sampling)
samples = {"samples": comfy.sample.sample(model_clone_with_lora, noise, 1, 1.0, "euler", "simple", positive, negative, sample,
denoise=1.0, disable_noise=True, start_step=0, last_step=1,
force_full_denoise=True, noise_mask=None, callback=None, disable_pbar=True, seed=None)}
pbar.update(1)
decoded = []
for start_idx in range(0, samples["samples"].shape[0], per_batch):
decoded.append(vae.decode(samples["samples"][start_idx:start_idx+per_batch]))
image_out = torch.cat(decoded, dim=0)
pbar.update(1)
if task == 'depth map':
imax = image_out.max()
imin = image_out.min()
image_out = (image_out-imin)/(imax-imin)
image_out = torch.max(image_out, dim=3, keepdim=True)[0].repeat(1, 1, 1, 3)
elif task == 'surface normals':
image_out = F.normalize(image_out * 2 - 1, dim=3) / 2 + 0.5
image_out = 1.0 - image_out
else:
image_out = image_out.clamp(-1.,1.)
return (image_out, samples,)