Remap Image Range¶
Documentation¶
- Class name:
RemapImageRange
- Category:
KJNodes/image
- Output node:
False
The RemapImageRange node is designed to adjust the pixel value range of an input image to a specified new range. It supports optional clamping to ensure that the remapped image values stay within a desired interval, enhancing flexibility in image preprocessing for various applications.
Input types¶
Required¶
image
- The input image to be remapped. This parameter is crucial for defining the source image whose pixel values are to be adjusted.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
min
- Specifies the minimum value of the new range for the image pixel values. It plays a key role in defining the lower bound of the target range.
- Comfy dtype:
FLOAT
- Python dtype:
float
max
- Defines the maximum value of the new range for the image pixel values, setting the upper limit of the target range.
- Comfy dtype:
FLOAT
- Python dtype:
float
clamp
- A boolean flag that determines whether the remapped image values should be clamped to the [0.0, 1.0] range, ensuring that pixel values remain valid.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Output types¶
image
- Comfy dtype:
IMAGE
- The output image with its pixel values remapped to the specified new range. This parameter signifies the transformed image ready for further processing or analysis.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class RemapImageRange:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image": ("IMAGE",),
"min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}),
"max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}),
"clamp": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "remap"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Remaps the image values to the specified range.
"""
def remap(self, image, min, max, clamp):
if image.dtype == torch.float16:
image = image.to(torch.float32)
image = min + image * (max - min)
if clamp:
image = torch.clamp(image, min=0.0, max=1.0)
return (image, )