Stable Zero123 Batch Schedule¶
Documentation¶
- Class name:
StableZero123_BatchSchedule
- Category:
KJNodes/experimental
- Output node:
False
This node is designed to manage and schedule batch operations for the StableZero123 model, optimizing the processing of multiple inputs in a batched manner for efficiency and performance.
Input types¶
Required¶
clip_vision
- Represents the CLIP vision model input, used to provide visual context or features for processing.
- Comfy dtype:
CLIP_VISION
- Python dtype:
str
init_image
- Initial image input for the model to process or modify.
- Comfy dtype:
IMAGE
- Python dtype:
Image
vae
- The variational autoencoder used for encoding or decoding images in the model's processing pipeline.
- Comfy dtype:
VAE
- Python dtype:
VAE
width
- Specifies the width of the output image, allowing for customization of the image dimensions.
- Comfy dtype:
INT
- Python dtype:
int
height
- Specifies the height of the output image, allowing for customization of the image dimensions.
- Comfy dtype:
INT
- Python dtype:
int
batch_size
- Determines the number of images processed in a single batch, affecting efficiency and performance.
- Comfy dtype:
INT
- Python dtype:
int
interpolation
- Defines the interpolation method used in image processing, affecting the smoothness and quality of the output.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
azimuth_points_string
- A string defining azimuth points for 3D model orientation, used in scheduling the model's view direction.
- Comfy dtype:
STRING
- Python dtype:
str
elevation_points_string
- A string defining elevation points for 3D model orientation, used in scheduling the model's view direction.
- Comfy dtype:
STRING
- Python dtype:
str
Output types¶
positive
- Comfy dtype:
CONDITIONING
- The positive conditioning output from the model, used for enhancing certain features or aspects in the generated content.
- Python dtype:
Conditioning
- Comfy dtype:
negative
- Comfy dtype:
CONDITIONING
- The negative conditioning output from the model, used for suppressing certain features or aspects in the generated content.
- Python dtype:
Conditioning
- Comfy dtype:
latent
- Comfy dtype:
LATENT
- Represents the latent space encoding of the input, capturing the essential features for further processing or generation.
- Python dtype:
Latent
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class StableZero123_BatchSchedule:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"init_image": ("IMAGE",),
"vae": ("VAE",),
"width": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n", "multiline": True}),
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n7:(0.0),\n15:(0.0)\n", "multiline": True}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "KJNodes/experimental"
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation):
output = clip_vision.encode_image(init_image)
pooled = output.image_embeds.unsqueeze(0)
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
encode_pixels = pixels[:,:,:,:3]
t = vae.encode(encode_pixels)
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
# Parse the azimuth input string into a list of tuples
azimuth_points = []
azimuth_points_string = azimuth_points_string.rstrip(',\n')
for point_str in azimuth_points_string.split(','):
frame_str, azimuth_str = point_str.split(':')
frame = int(frame_str.strip())
azimuth = float(azimuth_str.strip()[1:-1])
azimuth_points.append((frame, azimuth))
# Sort the points by frame number
azimuth_points.sort(key=lambda x: x[0])
# Parse the elevation input string into a list of tuples
elevation_points = []
elevation_points_string = elevation_points_string.rstrip(',\n')
for point_str in elevation_points_string.split(','):
frame_str, elevation_str = point_str.split(':')
frame = int(frame_str.strip())
elevation_val = float(elevation_str.strip()[1:-1])
elevation_points.append((frame, elevation_val))
# Sort the points by frame number
elevation_points.sort(key=lambda x: x[0])
# Index of the next point to interpolate towards
next_point = 1
next_elevation_point = 1
positive_cond_out = []
positive_pooled_out = []
negative_cond_out = []
negative_pooled_out = []
#azimuth interpolation
for i in range(batch_size):
# Find the interpolated azimuth for the current frame
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]:
next_point += 1
# If next_point is equal to the length of points, we've gone past the last point
if next_point == len(azimuth_points):
next_point -= 1 # Set next_point to the last index of points
prev_point = max(next_point - 1, 0) # Ensure prev_point is not less than 0
# Calculate fraction
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]: # Prevent division by zero
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0])
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
# Use the new interpolate_angle function
interpolated_azimuth = interpolate_angle(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction)
else:
interpolated_azimuth = azimuth_points[prev_point][1]
# Interpolate the elevation
next_elevation_point = 1
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]:
next_elevation_point += 1
if next_elevation_point == len(elevation_points):
next_elevation_point -= 1
prev_elevation_point = max(next_elevation_point - 1, 0)
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]:
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0])
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
interpolated_elevation = interpolate_angle(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction)
else:
interpolated_elevation = elevation_points[prev_elevation_point][1]
cam_embeds = camera_embeddings(interpolated_elevation, interpolated_azimuth)
cond = torch.cat([pooled, cam_embeds.repeat((pooled.shape[0], 1, 1))], dim=-1)
positive_pooled_out.append(t)
positive_cond_out.append(cond)
negative_pooled_out.append(torch.zeros_like(t))
negative_cond_out.append(torch.zeros_like(pooled))
# Concatenate the conditions and pooled outputs
final_positive_cond = torch.cat(positive_cond_out, dim=0)
final_positive_pooled = torch.cat(positive_pooled_out, dim=0)
final_negative_cond = torch.cat(negative_cond_out, dim=0)
final_negative_pooled = torch.cat(negative_pooled_out, dim=0)
# Structure the final output
final_positive = [[final_positive_cond, {"concat_latent_image": final_positive_pooled}]]
final_negative = [[final_negative_cond, {"concat_latent_image": final_negative_pooled}]]
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (final_positive, final_negative, {"samples": latent})