Empty Motion Data¶
Documentation¶
- Class name:
EmptyMotionData
- Category:
MotionDiff
- Output node:
False
The EmptyMotionData node is designed to generate a template for motion data with specified frame lengths. It primarily serves the purpose of creating a base structure for motion data that can be further processed or manipulated, providing a standardized format for initializing motion-related tasks within the MotionDiff framework.
Input types¶
Required¶
frames
- Specifies the number of frames for the generated motion data. This parameter directly influences the shape of the motion tensor, thereby determining the temporal length of the motion data.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
motion_data
- Comfy dtype:
MOTION_DATA
- Outputs a dictionary containing tensors for motion, motion mask, and motion length, establishing a foundational structure for motion data with zeroed motion values and appropriate masking.
- Python dtype:
Dict[str, torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class EmptyMotionData:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"frames": ("INT", {"default": 196, "min": 1, "max": 196})
}
}
RETURN_TYPES = ("MOTION_DATA", )
CATEGORY = "MotionDiff"
FUNCTION = "encode_text"
def encode_text(self, frames):
return ({
'motion': torch.zeros(1, frames, 263),
'motion_mask': torch.ones(1, frames),
'motion_length': torch.Tensor([frames]).long(),
}, )