MotionDiff Loader¶
Documentation¶
- Class name:
MotionDiffLoader
- Category:
MotionDiff
- Output node:
False
The MotionDiffLoader node is designed to load and initialize the Motion Diffusion Model (MDM) and its associated CLIP wrapper based on a specified model dataset. This node plays a crucial role in preparing the motion generation models for subsequent processing or inference tasks, ensuring they are correctly configured with the necessary dataset information.
Input types¶
Required¶
model_dataset
- Specifies the dataset model to be loaded. This selection determines the configuration of the Motion Diffusion Model and its CLIP wrapper, impacting the behavior and performance of motion generation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Output types¶
md_model
- Comfy dtype:
MD_MODEL
- Returns a wrapped instance of the Motion Diffusion Model, ready for motion generation tasks.
- Python dtype:
MotionDiffModelWrapper
- Comfy dtype:
md_clip
- Comfy dtype:
MD_CLIP
- Returns a CLIP wrapper configured for the loaded Motion Diffusion Model, facilitating text-conditioned motion generation.
- Python dtype:
MotionDiffCLIPWrapper
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class MotionDiffLoader:
@classmethod
def INPUT_TYPES(s):
global model_dataset_dict
model_dataset_dict = get_model_dataset_dict()
return {
"required": {
"model_dataset": (
list(model_dataset_dict.keys()),
{ "default": "-human_ml3d" }
)
},
}
RETURN_TYPES = ("MD_MODEL", "MD_CLIP")
CATEGORY = "MotionDiff"
FUNCTION = "load_mdm"
def load_mdm(self, model_dataset):
global model_dataset_dict
if model_dataset_dict is None:
model_dataset_dict = get_model_dataset_dict() #In case of API users
model_config = model_dataset_dict[model_dataset]()
mdm = create_mdm_model(model_config)
return (MotionDiffModelWrapper(mdm, dataset=model_config.dataset), MotionDiffCLIPWrapper(mdm))