Tiled VAE Encode¶
Documentation¶
- Class name:
VAEEncodeTiled_TiledDiffusion
- Category:
_for_testing
- Output node:
False
This node is designed for encoding images into a latent space representation using a tiled VAE approach, optimizing for efficiency and flexibility in handling various image sizes through tiling.
Input types¶
Required¶
pixels
- The input image to be encoded. This parameter is crucial for determining the content that will be transformed into a latent representation.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
vae
- The VAE model used for encoding. It defines the architecture and parameters of the variational autoencoder that processes the image.
- Comfy dtype:
VAE
- Python dtype:
VAE
tile_size
- Specifies the size of the tiles into which the image is divided for encoding. This affects the granularity of the encoding process and can be adjusted for performance or quality.
- Comfy dtype:
INT
- Python dtype:
int
fast
- A boolean flag that, when true, enables a faster but potentially less accurate encoding process.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
color_fix
- A boolean flag that, when true, applies a color correction step to the image before encoding. This can be useful for maintaining color consistency across tiles.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Output types¶
latent
- Comfy dtype:
LATENT
- The encoded latent representation of the input image. This output captures the essential features of the image in a compressed form, suitable for various downstream tasks.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class VAEEncodeTiled_TiledDiffusion(TiledVAE):
@classmethod
def INPUT_TYPES(s):
fast = True
tile_size = get_rcmd_enc_tsize()
return {"required": {"pixels": ("IMAGE", ),
"vae": ("VAE", ),
"tile_size": ("INT", {"default": tile_size, "min": 256, "max": 4096, "step": 16}),
"fast": ("BOOLEAN", {"default": fast}),
"color_fix": ("BOOLEAN", {"default": fast}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "process"
CATEGORY = "_for_testing"
def __init__(self):
self.is_decoder = False
super().__init__()