Duplicate Image Batch 🎥🅥🅗🅢¶
Documentation¶
- Class name:
VHS_DuplicateImages
- Category:
Video Helper Suite 🎥🅥🅗🅢/image
- Output node:
False
The VHS_DuplicateImages
node is designed to create multiple copies of a given image batch, effectively duplicating the images a specified number of times. This functionality is crucial for operations requiring augmented data or increased dataset size without new data generation.
Input types¶
Required¶
images
- Specifies the batch of images to be duplicated. This input is central to the node's operation, determining the base data that will be replicated.
- Comfy dtype:
IMAGE
- Python dtype:
Tensor
multiply_by
- Determines the number of times the input images are duplicated. This parameter directly influences the output dataset size, allowing for flexible data augmentation.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
IMAGE
- Comfy dtype:
IMAGE
- The duplicated batch of images, expanded according to the
multiply_by
parameter. - Python dtype:
Tensor
- Comfy dtype:
count
- Comfy dtype:
INT
- The total number of images in the duplicated batch, providing a straightforward count of the output dataset size.
- Python dtype:
int
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class DuplicateImages:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"multiply_by": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1})
}
}
CATEGORY = "Video Helper Suite 🎥🅥🅗🅢/image"
RETURN_TYPES = ("IMAGE", "INT",)
RETURN_NAMES = ("IMAGE", "count",)
FUNCTION = "duplicate_input"
def duplicate_input(self, images: Tensor, multiply_by: int):
full_images = []
for n in range(0, multiply_by):
full_images.append(images)
new_images = torch.cat(full_images, dim=0)
return (new_images, new_images.size(0),)