SamplerLCMDualNoise¶
Documentation¶
- Class name:
SamplerLCMDualNoise
- Category:
sampling/custom_sampling/samplers
- Output node:
False
The SamplerLCMDualNoise node provides a mechanism for generating samples using a dual noise approach within a custom sampling framework. It leverages a combination of weights, normalization steps, and the option to reuse or parallelize noise generation to enhance the sampling process.
Input types¶
Required¶
weight
- Specifies the blending weight between two noise-induced samples, influencing the balance and variation in the sampling output.
- Comfy dtype:
FLOAT
- Python dtype:
float
normalize_steps
- Determines the number of normalization steps to apply, affecting the smoothness and quality of the generated samples.
- Comfy dtype:
INT
- Python dtype:
int
reuse_lcm_noise
- Controls whether the same noise is reused across sampling steps, impacting the diversity and consistency of samples.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
parallel
- Enables parallel processing of noise generation, potentially speeding up the sampling process.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Output types¶
sampler
- Comfy dtype:
SAMPLER
- Produces a sampler configured with dual noise characteristics for generating samples.
- Python dtype:
comfy.samplers.KSAMPLER
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class SamplerLCMDualNoise:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"weight": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.001, "round": False}),
"normalize_steps": ("INT", {"default": 0, "min": 0, "max": 50, "step": 1}),
"reuse_lcm_noise": ("BOOLEAN", {"default": False}),
"parallel": ("BOOLEAN", {"default": False}),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, weight, normalize_steps, reuse_lcm_noise, parallel):
return (comfy.samplers.KSAMPLER(sample_lcm_dual_noise, extra_options={"weight": weight, "normalize_steps": normalize_steps, "reuse_lcm_noise": reuse_lcm_noise, "parallel": parallel}),)