⌨️ CR Load Image List Plus¶
Documentation¶
- Class name:
CR Load Image List Plus
- Category:
🧩 Comfyroll Studio/✨ Essential/📜 List/⌨️ IO
- Output node:
False
The CR Load Image List Plus node is designed to load a list of images from a specified directory, along with additional information such as masks, indexes, filenames, and EXIF data. It aims to provide a comprehensive set of data for each image, facilitating advanced image processing and manipulation tasks.
Input types¶
Required¶
input_folder
- Specifies the directory from which images are to be loaded. It plays a crucial role in determining the source of the images and ensuring they are accessible for processing.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
start_index
- Determines the starting point within the list of images to begin loading, allowing for selective processing of images based on their order in the directory.
- Comfy dtype:
INT
- Python dtype:
int
max_images
- Limits the number of images to be loaded from the directory, enabling control over the volume of data processed at one time.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
input_path
- An optional path to a specific directory or file from which images are to be loaded, providing an alternative to the default input folder.
- Comfy dtype:
STRING
- Python dtype:
str
Output types¶
IMAGE
- Comfy dtype:
IMAGE
- A list of loaded images, each converted to a tensor format suitable for further processing.
- Python dtype:
List[torch.Tensor]
- Comfy dtype:
MASK
- Comfy dtype:
MASK
- A list of masks associated with the loaded images, providing additional data for image manipulation tasks.
- Python dtype:
List[torch.Tensor]
- Comfy dtype:
index
- Comfy dtype:
INT
- A list of indexes corresponding to the loaded images, offering a reference for image identification and ordering.
- Python dtype:
List[int]
- Comfy dtype:
filename
- Comfy dtype:
STRING
- A list of filenames for the loaded images, aiding in tracking and referencing the images.
- Python dtype:
List[str]
- Comfy dtype:
width
- Comfy dtype:
INT
- The width of the loaded images, providing dimensional data for processing.
- Python dtype:
int
- Comfy dtype:
height
- Comfy dtype:
INT
- The height of the loaded images, providing dimensional data for processing.
- Python dtype:
int
- Comfy dtype:
list_length
- Comfy dtype:
INT
- The total number of images loaded, offering insight into the dataset size.
- Python dtype:
int
- Comfy dtype:
show_help
- Comfy dtype:
STRING
- A link to the help documentation for the node, offering additional information and guidance.
- Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class CR_LoadImageListPlus:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.input_directory
image_folder = [name for name in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir,name))]
return {"required": {"input_folder": (sorted(image_folder), ),
"start_index": ("INT", {"default": 0, "min": 0, "max": 99999}),
"max_images": ("INT", {"default": 1, "min": 1, "max": 99999}),
},
"optional": {"input_path": ("STRING", {"default": '', "multiline": False}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "INT", "STRING", "INT", "INT", "INT", "STRING", )
RETURN_NAMES = ("IMAGE", "MASK", "index", "filename", "width", "height", "list_length", "show_help", )
OUTPUT_IS_LIST = (True, True, True, True, False, False, False, False)
FUNCTION = "make_list"
CATEGORY = icons.get("Comfyroll/List/IO")
def make_list(self, start_index, max_images, input_folder, input_path=None, vae=None):
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/List-Nodes#cr-image-list-plus"
# Set the input path
if input_path != '' and input_path is not None:
if not os.path.exists(input_path):
print(f"[Warning] CR Image List: The input_path `{input_path}` does not exist")
return ("",)
in_path = input_path
else:
input_dir = folder_paths.input_directory
in_path = os.path.join(input_dir, input_folder)
# Check if the folder is empty
if not os.listdir(in_path):
print(f"[Warning] CR Image List: The folder `{in_path}` is empty")
return None
file_list = sorted(os.listdir(in_path), key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ()))
image_list = []
mask_list = []
index_list = []
filename_list = []
exif_list = []
# Ensure start_index is within the bounds of the list
start_index = max(0, min(start_index, len(file_list) - 1))
# Calculate the end index based on max_rows
end_index = min(start_index + max_images, len(file_list) - 1)
for num in range(start_index, end_index):
filename = file_list[num]
img_path = os.path.join(in_path, filename)
img = Image.open(os.path.join(in_path, file_list[num]))
image_list.append(pil2tensor(img.convert("RGB")))
tensor_img = pil2tensor(img)
mask_list.append(tensor2rgba(tensor_img)[:,:,:,0])
# Populate the image index
index_list.append(num)
# Populate the filename_list
filename_list.append(filename)
if not image_list:
# Handle the case where the list is empty
print("CR Load Image List: No images found.")
return None
width, height = Image.open(os.path.join(in_path, file_list[start_index])).size
images = torch.cat(image_list, dim=0)
images_out = [images[i:i + 1, ...] for i in range(images.shape[0])]
masks = torch.cat(mask_list, dim=0)
mask_out = [masks[i:i + 1, ...] for i in range(masks.shape[0])]
list_length = end_index - start_index
return (images_out, mask_out, index_list, filename_list, index_list, width, height, list_length, show_help, )