✈️ CR Module Input¶
Documentation¶
- Class name:
CR Module Input
- Category:
🧩 Comfyroll Studio/✨ Essential/🎷 Pipe/✈️ Module
- Output node:
False
The CR_ModuleInput node is designed to facilitate the flow of data through a pipeline by accepting a variety of inputs and flushing them through the system. It serves as a critical junction point in the pipeline, ensuring that data is correctly routed and transformed for subsequent processing stages.
Input types¶
Required¶
pipe
- The 'pipe' parameter is the primary conduit for data flowing through the node. It encapsulates a variety of data types and structures, acting as a central hub for the input data that will be processed and routed within the pipeline.
- Comfy dtype:
PIPE_LINE
- Python dtype:
Tuple[torch.Tensor, torch.nn.Module, str, str, torch.Tensor, torch.nn.Module, torch.nn.Module, PIL.Image.Image, int]
Output types¶
pipe
- Comfy dtype:
PIPE_LINE
- Represents the aggregated and processed data, ready to be forwarded to the next stage in the pipeline.
- Python dtype:
Tuple[torch.Tensor, torch.nn.Module, str, str, torch.Tensor, torch.nn.Module, torch.nn.Module, PIL.Image.Image, int, str]
- Comfy dtype:
model
- Comfy dtype:
MODEL
- The model data extracted from the input pipe.
- Python dtype:
torch.nn.Module
- Comfy dtype:
pos
- Comfy dtype:
CONDITIONING
- Positive conditioning data extracted from the input pipe.
- Python dtype:
str
- Comfy dtype:
neg
- Comfy dtype:
CONDITIONING
- Negative conditioning data extracted from the input pipe.
- Python dtype:
str
- Comfy dtype:
latent
- Comfy dtype:
LATENT
- Latent representation data extracted from the input pipe.
- Python dtype:
torch.Tensor
- Comfy dtype:
vae
- Comfy dtype:
VAE
- VAE model data extracted from the input pipe.
- Python dtype:
torch.nn.Module
- Comfy dtype:
clip
- Comfy dtype:
CLIP
- CLIP model data extracted from the input pipe.
- Python dtype:
torch.nn.Module
- Comfy dtype:
controlnet
- Comfy dtype:
CONTROL_NET
- ControlNet data extracted from the input pipe.
- Python dtype:
torch.nn.Module
- Comfy dtype:
image
- Comfy dtype:
IMAGE
- Image data extracted from the input pipe.
- Python dtype:
PIL.Image.Image
- Comfy dtype:
seed
- Comfy dtype:
INT
- Seed value extracted from the input pipe.
- Python dtype:
int
- Comfy dtype:
show_help
- Comfy dtype:
STRING
- A URL providing additional help and documentation for the node.
- Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class CR_ModuleInput:
@classmethod
def INPUT_TYPES(s):
return {
"required": {"pipe": ("PIPE_LINE",)},
}
RETURN_TYPES = ("PIPE_LINE", "MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "CLIP", "CONTROL_NET", "IMAGE", "INT", "STRING", )
RETURN_NAMES = ("pipe", "model", "pos", "neg", "latent", "vae", "clip", "controlnet", "image", "seed", "show_help", )
FUNCTION = "flush"
CATEGORY = icons.get("Comfyroll/Pipe/Module")
def flush(self, pipe):
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Pipe-Nodes#cr-module-input"
model, pos, neg, latent, vae, clip, controlnet, image, seed = pipe
return (pipe, model, pos, neg, latent, vae, clip, controlnet, image, seed, show_help, )