✈️ CR Module Pipe Loader¶
Documentation¶
- Class name:
CR Module Pipe Loader
- Category:
🧩 Comfyroll Studio/✨ Essential/🎷 Pipe/✈️ Module
- Output node:
False
The CR Module Pipe Loader node is designed to aggregate various types of inputs, such as models, conditioning data, latent vectors, and images, into a unified pipeline format. It facilitates the modular assembly of components for generative AI applications, allowing for flexible and dynamic construction of processing pipelines.
Input types¶
Required¶
Optional¶
model
- Represents a model component to be included in the pipeline. It's crucial for defining the generative model that will be used in the pipeline.
- Comfy dtype:
MODEL
- Python dtype:
tuple
pos
- Specifies positive conditioning data to guide the generative process. It affects the direction and characteristics of the generation.
- Comfy dtype:
CONDITIONING
- Python dtype:
tuple
neg
- Specifies negative conditioning data to counterbalance or steer away from certain aspects during generation.
- Comfy dtype:
CONDITIONING
- Python dtype:
tuple
latent
- Provides a latent vector to seed or influence the generative process, offering a way to introduce variability or specific directions.
- Comfy dtype:
LATENT
- Python dtype:
tuple
vae
- Represents a VAE (Variational Autoencoder) component, which can be used for encoding or decoding in the pipeline.
- Comfy dtype:
VAE
- Python dtype:
tuple
clip
- Incorporates a CLIP model for semantic understanding or alignment, enhancing the generative process with textual or visual guidance.
- Comfy dtype:
CLIP
- Python dtype:
tuple
controlnet
- Includes a ControlNet component for additional control over the generation process, allowing for more precise manipulations.
- Comfy dtype:
CONTROL_NET
- Python dtype:
tuple
image
- Includes an image to be processed or used as part of the generative process, adding visual data to the pipeline.
- Comfy dtype:
IMAGE
- Python dtype:
tuple
seed
- Provides a seed value for random number generation, ensuring reproducibility or variability in the generative process.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
pipe
- Comfy dtype:
PIPE_LINE
- The assembled pipeline, encapsulating all the provided components in a unified format for further processing.
- Python dtype:
tuple
- Comfy dtype:
show_help
- Comfy dtype:
STRING
- A URL to the documentation or help page for the node, offering guidance on its usage and capabilities.
- Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes:
Source code¶
class CR_ModulePipeLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
},
"optional": {
"model": ("MODEL",),
"pos": ("CONDITIONING",),
"neg": ("CONDITIONING",),
"latent": ("LATENT",),
"vae": ("VAE",),
"clip": ("CLIP",),
"controlnet": ("CONTROL_NET",),
"image": ("IMAGE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff})
},
}
RETURN_TYPES = ("PIPE_LINE", "STRING", )
RETURN_NAMES = ("pipe", "show_help", )
FUNCTION = "pipe_input"
CATEGORY = icons.get("Comfyroll/Pipe/Module")
def pipe_input(self, model=0, pos=0, neg=0, latent=0, vae=0, clip=0, controlnet=0, image=0, seed=0):
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Pipe-Nodes#cr-module-pipe-loader"
pipe_line = (model, pos, neg, latent, vae, clip, controlnet, image, seed)
return (pipe_line, show_help, )