FL Image Pixelator¶
Documentation¶
- Class name:
FL_ImagePixelator
- Category:
🏵️Fill Nodes
- Output node:
False
The FL_ImagePixelator node applies pixelation effects to images, supporting both individual images and batches. It can process images represented as tensors or PIL images, applying a scale factor to pixelate the image and a kernel size for additional processing, enhancing the pixelation effect.
Input types¶
Required¶
image
- The image to be pixelated. This can be a single image or a batch of images, in either torch.Tensor or PIL.Image format. It's the primary input for pixelation.
- Comfy dtype:
IMAGE
- Python dtype:
Union[torch.Tensor, PIL.Image.Image]
scale_factor
- Determines the intensity of the pixelation effect by scaling the image's resolution down before scaling it back up.
- Comfy dtype:
FLOAT
- Python dtype:
float
kernel_size
- Specifies the size of the kernel used in the additional processing step after pixelation, affecting the final appearance of the pixelated image.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The pixelated image, processed according to the specified scale factor and kernel size. It can be a single image or a batch of images, in the same format as the input.
- Python dtype:
Union[torch.Tensor, PIL.Image.Image]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class FL_ImagePixelator:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE", {}),
"scale_factor": ("FLOAT", {"default": 0.0500, "min": 0.0100, "max": 0.2000, "step": 0.0100}),
"kernel_size": ("INT", {"default": 3, "max": 10, "step": 1}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "pixelate_image"
CATEGORY = "🏵️Fill Nodes"
def pixelate_image(self, image, scale_factor, kernel_size):
if isinstance(image, torch.Tensor):
if image.dim() == 4: # Batch dimension is present
output_images = []
total_frames = image.shape[0]
for i, single_image in enumerate(image, start=1):
single_image = single_image.unsqueeze(0) # Add batch dimension
single_image = self.apply_pixelation_tensor(single_image, scale_factor)
single_image = self.process(single_image, kernel_size)
output_images.append(single_image)
print(f"Processing frame {i}/{total_frames}")
image = torch.cat(output_images, dim=0) # Concatenate processed images along batch dimension
elif image.dim() == 3: # No batch dimension, single image
image = image.unsqueeze(0) # Add batch dimension
image = self.apply_pixelation_tensor(image, scale_factor)
image = self.process(image, kernel_size)
image = image.squeeze(0) # Remove batch dimension
print("Processing single image")
else:
return (None,)
elif isinstance(image, Image.Image):
image = self.apply_pixelation_pil(image, scale_factor)
image = self.process(image, kernel_size)
print("Processing single PIL image")
else:
return (None,)
return (image,)
def apply_pixelation_pil(self, input_image, scale_factor):
width, height = input_image.size
new_size = (int(width * scale_factor), int(height * scale_factor))
resized_image = input_image.resize(new_size, Image.NEAREST)
pixelated_image = resized_image.resize((width, height), Image.NEAREST)
return pixelated_image
def apply_pixelation_tensor(self, input_image, scale_factor):
_, num_channels, height, width = input_image.shape
new_height, new_width = max(1, int(height * scale_factor)), max(1, int(width * scale_factor))
resized_tensor = torch.nn.functional.interpolate(input_image, size=(new_height, new_width), mode='nearest')
output_tensor = torch.nn.functional.interpolate(resized_tensor, size=(height, width), mode='nearest')
return output_tensor
def process(self, image, kernel_size):
device = comfy.model_management.get_torch_device()
kernel = torch.ones(kernel_size, kernel_size, device=device)
image_k = image.to(device).movedim(-1, 1)
output = gradient(image_k, kernel)
img_out = output.to(comfy.model_management.intermediate_device()).movedim(1, -1)
return img_out