Batch Value Schedule (Latent Input) 📅🅕🅝¶
Documentation¶
- Class name:
BatchValueScheduleLatentInput
- Category:
FizzNodes 📅🅕🅝/BatchScheduleNodes
- Output node:
False
The BatchValueScheduleLatentInput node is designed to process latent inputs in the context of batch scheduling. It focuses on handling and transforming latent data according to a value schedule, enabling dynamic adjustments and manipulations of latent vectors based on specified scheduling parameters.
Input types¶
Required¶
text
- The 'text' parameter is a string that specifies the key frames and their corresponding values for the value schedule. It plays a crucial role in determining how the latent inputs are transformed over time.
- Comfy dtype:
STRING
- Python dtype:
str
num_latents
- The 'num_latents' parameter represents the latent inputs to be processed. It is essential for defining the latent vectors that will be adjusted according to the value schedule.
- Comfy dtype:
LATENT
- Python dtype:
Dict[str, torch.Tensor]
print_output
- The 'print_output' parameter controls whether the scheduling results are printed. It allows for optional debugging or visualization of the value schedule's effect on the latent inputs.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Output types¶
float
- Comfy dtype:
FLOAT
- This output represents the scheduled values as a floating-point number, reflecting the dynamic adjustments made to the latent inputs.
- Python dtype:
torch.Tensor
- Comfy dtype:
int
- Comfy dtype:
INT
- This output provides the integer representation of the scheduled values, offering an alternative numerical perspective on the adjustments.
- Python dtype:
List[int]
- Comfy dtype:
latent
- Comfy dtype:
LATENT
- This output includes the transformed latent inputs, showcasing the result of the scheduling process on the latent vectors.
- Python dtype:
Dict[str, torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class BatchValueScheduleLatentInput:
@classmethod
def INPUT_TYPES(s):
return {"required": {"text": ("STRING", {"multiline": True, "default": defaultValue}),
"num_latents": ("LATENT", ),
"print_output": ("BOOLEAN", {"default": False})}}
RETURN_TYPES = ("FLOAT", "INT", "LATENT", )
FUNCTION = "animate"
CATEGORY = "FizzNodes 📅🅕🅝/BatchScheduleNodes"
def animate(self, text, num_latents, print_output):
num_elements = sum(tensor.size(0) for tensor in num_latents.values())
max_frames = num_elements
t = batch_get_inbetweens(batch_parse_key_frames(text, max_frames), max_frames)
if print_output is True:
print("ValueSchedule: ", t)
return (t, list(map(int,t)), num_latents, )