Init Node Frame 📅🅕🅝¶
Documentation¶
- Class name:
Init FizzFrame
- Category:
FizzNodes 📅🅕🅝/FrameNodes
- Output node:
False
The Init FizzFrame node is designed to initialize the frame environment for further operations, setting up a foundational structure for managing and manipulating frame data within the FizzNodes framework.
Input types¶
Required¶
frame
- The 'frame' parameter is crucial as it serves as the primary identifier for the frame being initialized, dictating the starting point for frame-related operations.
- Comfy dtype:
INT
- Python dtype:
int
positive_text
- The 'positive_text' parameter allows for the specification of positive aspects or attributes associated with the frame, contributing to the frame's overall positive context.
- Comfy dtype:
STRING
- Python dtype:
str
Optional¶
negative_text
- The 'negative_text' parameter enables the inclusion of negative aspects or attributes for the frame, adding to the frame's overall negative context.
- Comfy dtype:
STRING
- Python dtype:
str
general_positive
- This parameter specifies general positive context that can be applied across frames, enhancing the positive aspect of the frame environment.
- Comfy dtype:
STRING
- Python dtype:
str
general_negative
- Similar to 'general_positive', this parameter adds a general negative context applicable across frames, contributing to the frame environment's negative aspect.
- Comfy dtype:
STRING
- Python dtype:
str
previous_frame
- The 'previous_frame' parameter is used to reference a prior frame, allowing for the continuation or modification of its context in the current frame initialization.
- Comfy dtype:
FIZZFRAME
- Python dtype:
FIZZFRAME
clip
- The 'clip' parameter is intended for including CLIP model information, which can be utilized for further processing or conditioning of the frame data.
- Comfy dtype:
CLIP
- Python dtype:
CLIP
Output types¶
fizzframe
- Comfy dtype:
FIZZFRAME
- Returns a FizzFrame object, representing the initialized frame with its specified attributes and contexts.
- Python dtype:
FIZZFRAME
- Comfy dtype:
conditioning
- Comfy dtype:
CONDITIONING
- Provides conditioning information derived from the frame's positive and negative texts, facilitating further contextual processing.
- Python dtype:
List[Tuple[torch.Tensor, Dict[str, torch.Tensor]]]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class InitNodeFrame:
def __init__(self):
self.frames = {}
self.thisFrame = {}
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"frame": ("INT", {"default": 0, "min": 0}),
"positive_text": ("STRING", {"multiline": True}),
},
"optional": {
"negative_text": ("STRING", {"multiline": True}),
"general_positive": ("STRING", {"multiline": True}),
"general_negative": ("STRING", {"multiline": True}),
"previous_frame": ("FIZZFRAME", {"forceInput": True}),
"clip": ("CLIP",),
}
}
RETURN_TYPES = ("FIZZFRAME","CONDITIONING","CONDITIONING",)
FUNCTION = "create_frame"
CATEGORY = "FizzNodes 📅🅕🅝/FrameNodes"
def create_frame(self, frame, positive_text, negative_text=None, general_positive=None, general_negative=None, previous_frame=None, clip=None):
new_frame = {
"positive_text": positive_text,
"negative_text": negative_text,
}
if previous_frame:
prev_frame = previous_frame.thisFrame
new_frame["general_positive"] = prev_frame["general_positive"]
new_frame["general_negative"] = prev_frame["general_negative"]
new_frame["clip"] = prev_frame["clip"]
self.frames = previous_frame.frames
if general_positive:
new_frame["general_positive"] = general_positive
if general_negative:
new_frame["general_negative"] = general_negative
new_positive_text = f"{positive_text}, {new_frame['general_positive']}"
new_negative_text = f"{negative_text}, {new_frame['general_negative']}"
if clip:
new_frame["clip"] = clip
pos_tokens = new_frame["clip"].tokenize(new_positive_text)
pos_cond, pos_pooled = new_frame["clip"].encode_from_tokens(pos_tokens, return_pooled=True)
new_frame["pos_conditioning"] = {"cond": pos_cond, "pooled": pos_pooled}
neg_tokens = new_frame["clip"].tokenize(new_negative_text)
neg_cond, neg_pooled = new_frame["clip"].encode_from_tokens(neg_tokens, return_pooled=True)
new_frame["neg_conditioning"] = {"cond": neg_cond, "pooled": neg_pooled}
self.frames[frame] = new_frame
self.thisFrame = new_frame
return (self, [[pos_cond, {"pooled_output": pos_pooled}]], [[neg_cond, {"pooled_output": neg_pooled}]])