Skip to content

IPAdapter Embeds Batch

Documentation

  • Class name: IPAdapterEmbedsBatch
  • Category: ipadapter/embeds
  • Output node: False

The IPAdapterEmbedsBatch node is designed to handle batch processing of image embeddings within the IPAdapter framework. It extends the capabilities of IPAdapterEmbeds by enabling the processing of multiple embeddings simultaneously, optimizing for efficiency and scalability in embedding operations.

Input types

Required

  • model
    • unknown
    • Comfy dtype: MODEL
    • Python dtype: unknown
  • ipadapter
    • unknown
    • Comfy dtype: IPADAPTER
    • Python dtype: unknown
  • pos_embed
    • unknown
    • Comfy dtype: EMBEDS
    • Python dtype: unknown
  • weight
    • unknown
    • Comfy dtype: FLOAT
    • Python dtype: unknown
  • weight_type
    • unknown
    • Comfy dtype: COMBO[STRING]
    • Python dtype: unknown
  • start_at
    • unknown
    • Comfy dtype: FLOAT
    • Python dtype: unknown
  • end_at
    • unknown
    • Comfy dtype: FLOAT
    • Python dtype: unknown
  • embeds_scaling
    • unknown
    • Comfy dtype: COMBO[STRING]
    • Python dtype: unknown

Optional

  • neg_embed
    • unknown
    • Comfy dtype: EMBEDS
    • Python dtype: unknown
  • attn_mask
    • unknown
    • Comfy dtype: MASK
    • Python dtype: unknown
  • clip_vision
    • unknown
    • Comfy dtype: CLIP_VISION
    • Python dtype: unknown

Output types

  • model
    • Comfy dtype: MODEL
    • Represents the output model after processing the batch of image embeddings, encapsulating the enhanced or modified embeddings.
    • Python dtype: torch.nn.Module

Usage tips

  • Infra type: CPU
  • Common nodes: unknown

Source code

class IPAdapterEmbedsBatch(IPAdapterEmbeds):
    def __init__(self):
        self.unfold_batch = True