IPAdapter FaceID¶
Documentation¶
- Class name:
IPAdapterFaceID
- Category:
ipadapter/faceid
- Output node:
False
The IPAdapterFaceID node is designed to enhance image processing capabilities by integrating face identification features. It leverages advanced IPAdapter functionalities to apply face-specific adjustments and embeddings, aiming to improve the quality and relevance of generated images based on facial recognition.
Input types¶
Required¶
model
- Specifies the model to be used for face identification, central to the node's operation.
- Comfy dtype:
MODEL
- Python dtype:
str
ipadapter
- Defines the IPAdapter configuration to be used, crucial for determining how face identification features are integrated.
- Comfy dtype:
IPADAPTER
- Python dtype:
str
image
- The input image to be processed, serving as the basis for face identification and subsequent adjustments.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
weight
- A float value that adjusts the influence of the face identification features on the final image output.
- Comfy dtype:
FLOAT
- Python dtype:
float
weight_faceidv2
- A float value specifically for adjusting the influence of FaceID v2 features, offering finer control over the face identification process.
- Comfy dtype:
FLOAT
- Python dtype:
float
weight_type
- Determines the method of weighting face identification features, affecting how these features influence the final image.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
combine_embeds
- Specifies the method for combining face identification embeddings, impacting the integration of facial features into the image.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
list[str]
start_at
- A float value indicating the starting point for applying face identification features within the processing pipeline.
- Comfy dtype:
FLOAT
- Python dtype:
float
end_at
- A float value indicating the end point for applying face identification features, defining the scope of their influence.
- Comfy dtype:
FLOAT
- Python dtype:
float
embeds_scaling
- Describes how face identification embeddings are scaled, affecting their impact on the image processing.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
list[str]
Optional¶
image_negative
- An optional input image to be used in a negative context, providing additional control over the face identification process.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
attn_mask
- An optional mask to focus or limit the attention mechanism during face identification, enhancing processing accuracy.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
clip_vision
- An optional CLIP vision model to further refine the face identification process through visual context.
- Comfy dtype:
CLIP_VISION
- Python dtype:
torch.Tensor
insightface
- An optional InsightFace model required for certain face identification functionalities, enhancing the node's capabilities.
- Comfy dtype:
INSIGHTFACE
- Python dtype:
torch.Tensor
Output types¶
MODEL
- Comfy dtype:
MODEL
- The processed model with integrated face identification features, ready for further image generation tasks.
- Python dtype:
str
- Comfy dtype:
face_image
- Comfy dtype:
IMAGE
- The output image that has been enhanced with face identification features, showcasing improved facial recognition and integration.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class IPAdapterFaceID(IPAdapterAdvanced):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"ipadapter": ("IPADAPTER", ),
"image": ("IMAGE",),
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
"weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }),
"weight_type": (WEIGHT_TYPES, ),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ),
},
"optional": {
"image_negative": ("IMAGE",),
"attn_mask": ("MASK",),
"clip_vision": ("CLIP_VISION",),
"insightface": ("INSIGHTFACE",),
}
}
CATEGORY = "ipadapter/faceid"
RETURN_TYPES = ("MODEL","IMAGE",)
RETURN_NAMES = ("MODEL", "face_image", )