IPAdapter Load Embeds¶
Documentation¶
- Class name:
IPAdapterLoadEmbeds
- Category:
ipadapter/embeds
- Output node:
False
The IPAdapterLoadEmbeds node is designed for loading pre-saved embedding vectors from files with a specific extension, facilitating the reuse of embeddings in image processing applications.
Input types¶
Required¶
embeds
- Specifies the file names from which to load the embeddings, enabling the selection of specific pre-saved embeddings for use in the node's operation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
List[str]
Output types¶
embeds
- Comfy dtype:
EMBEDS
- Returns the loaded embedding vectors, making them available for further processing or application within the image generation pipeline.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class IPAdapterLoadEmbeds:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')]
return {"required": {"embeds": [sorted(files), ]}, }
RETURN_TYPES = ("EMBEDS", )
FUNCTION = "load"
CATEGORY = "ipadapter/embeds"
def load(self, embeds):
path = folder_paths.get_annotated_filepath(embeds)
return (torch.load(path).cpu(), )