Apply InstantID Advanced¶
Documentation¶
- Class name:
ApplyInstantIDAdvanced
- Category:
InstantID
- Output node:
False
The ApplyInstantIDAdvanced node is designed to enhance image generation with specific identity features by applying advanced conditioning techniques. It utilizes a combination of InstantID, insight face analysis, control net adjustments, and additional parameters to fine-tune the identity preservation and control in the generated images.
Input types¶
Required¶
instantid
- The InstantID parameter is crucial for providing the identity-specific features to be preserved or emphasized in the generated image.
- Comfy dtype:
INSTANTID
- Python dtype:
dict
insightface
- Insightface parameter is used for face analysis, providing critical facial feature information that aids in the identity preservation process.
- Comfy dtype:
FACEANALYSIS
- Python dtype:
dict
control_net
- Control net parameter allows for fine-tuning and control over the generation process, ensuring the identity features are accurately applied.
- Comfy dtype:
CONTROL_NET
- Python dtype:
dict
image
- The image parameter serves as the base for identity application, where the identity features are to be preserved or emphasized.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
model
- Model parameter specifies the generative model to be used in conjunction with identity features for image generation.
- Comfy dtype:
MODEL
- Python dtype:
dict
positive
- Positive conditioning to emphasize certain identity features in the generated image.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
negative
- Negative conditioning to de-emphasize certain identity features in the generated image.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
ip_weight
- IP weight parameter adjusts the influence of identity preservation in the generation process.
- Comfy dtype:
FLOAT
- Python dtype:
float
cn_strength
- CN strength parameter controls the strength of the control net adjustments in the identity application process.
- Comfy dtype:
FLOAT
- Python dtype:
float
start_at
- Start at parameter defines the beginning point of identity feature application in the generation process.
- Comfy dtype:
FLOAT
- Python dtype:
float
end_at
- End at parameter defines the end point of identity feature application in the generation process.
- Comfy dtype:
FLOAT
- Python dtype:
float
noise
- Noise parameter introduces variability in the identity features application, enhancing the naturalness of the generated image.
- Comfy dtype:
FLOAT
- Python dtype:
float
combine_embeds
- Combine embeds parameter determines the method of combining multiple identity embeddings for application in the image generation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Optional¶
image_kps
- Image keypoints parameter provides additional facial feature information for enhanced identity preservation.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
mask
- Mask parameter allows for selective application of identity features in the generated image, enhancing control over the preservation process.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
Output types¶
MODEL
- Comfy dtype:
MODEL
- The output model after applying InstantIDAdvanced, incorporating the identity features and adjustments made through the input parameters.
- Python dtype:
dict
- Comfy dtype:
positive
- Comfy dtype:
CONDITIONING
- The enhanced positive conditioning output, reflecting the emphasized identity features in the generated image.
- Python dtype:
str
- Comfy dtype:
negative
- Comfy dtype:
CONDITIONING
- The enhanced negative conditioning output, reflecting the de-emphasized identity features in the generated image.
- Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ApplyInstantIDAdvanced(ApplyInstantID):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"instantid": ("INSTANTID", ),
"insightface": ("FACEANALYSIS", ),
"control_net": ("CONTROL_NET", ),
"image": ("IMAGE", ),
"model": ("MODEL", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"ip_weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 3.0, "step": 0.01, }),
"cn_strength": ("FLOAT", {"default": .8, "min": 0.0, "max": 10.0, "step": 0.01, }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.1, }),
"combine_embeds": (['average', 'norm average', 'concat'], {"default": 'average'}),
},
"optional": {
"image_kps": ("IMAGE",),
"mask": ("MASK",),
}
}