InstantID Apply ControlNet¶
Documentation¶
- Class name:
ApplyInstantIDControlNet
- Category:
InstantID
- Output node:
False
This node is designed to apply a control network to modify facial embeddings based on specified conditions, leveraging insights from facial analysis and control network parameters to achieve targeted modifications in facial representations.
Input types¶
Required¶
face_embeds
- Facial embeddings that represent the key features of a face, serving as the input for targeted modifications.
- Comfy dtype:
FACE_EMBEDS
- Python dtype:
torch.Tensor
control_net
- The control network model used to apply modifications to the facial embeddings.
- Comfy dtype:
CONTROL_NET
- Python dtype:
torch.nn.Module
image_kps
- Key points from the image that are used to guide the modifications applied by the control network.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
positive
- Positive conditioning phrases or keywords that guide the direction of the modifications.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
negative
- Negative conditioning phrases or keywords that specify undesired attributes to be avoided in the modifications.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
strength
- The intensity of the modifications applied by the control network.
- Comfy dtype:
FLOAT
- Python dtype:
float
start_at
- The starting point in the process where modifications begin to be applied.
- Comfy dtype:
FLOAT
- Python dtype:
float
end_at
- The ending point in the process where modifications cease to be applied.
- Comfy dtype:
FLOAT
- Python dtype:
float
Optional¶
mask
- An optional mask that can be used to localize the modifications applied by the control network.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
Output types¶
positive
- Comfy dtype:
CONDITIONING
- The modified positive conditioning after applying the control network, reflecting the targeted modifications.
- Python dtype:
List[Tuple[str, Dict]]
- Comfy dtype:
negative
- Comfy dtype:
CONDITIONING
- The modified negative conditioning after applying the control network, reflecting the avoidance of specified undesired attributes.
- Python dtype:
List[Tuple[str, Dict]]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ApplyInstantIDControlNet:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"face_embeds": ("FACE_EMBEDS", ),
"control_net": ("CONTROL_NET", ),
"image_kps": ("IMAGE", ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING",)
RETURN_NAMES = ("positive", "negative", )
FUNCTION = "apply_controlnet"
CATEGORY = "InstantID"
def apply_controlnet(self, face_embeds, control_net, image_kps, positive, negative, strength, start_at, end_at, mask=None):
self.device = comfy.model_management.get_torch_device()
if strength == 0:
return (positive, negative)
if mask is not None:
mask = mask.to(self.device)
if mask is not None and len(mask.shape) < 3:
mask = mask.unsqueeze(0)
image_prompt_embeds = face_embeds['cond']
uncond_image_prompt_embeds = face_embeds['uncond']
cnets = {}
cond_uncond = []
control_hint = image_kps.movedim(-1,1)
is_cond = True
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
prev_cnet = d.get('control', None)
if prev_cnet in cnets:
c_net = cnets[prev_cnet]
else:
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_at, end_at))
c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net
d['control'] = c_net
d['control_apply_to_uncond'] = False
d['cross_attn_controlnet'] = image_prompt_embeds.to(comfy.model_management.intermediate_device()) if is_cond else uncond_image_prompt_embeds.to(comfy.model_management.intermediate_device())
if mask is not None and is_cond:
d['mask'] = mask
d['set_area_to_bounds'] = False
n = [t[0], d]
c.append(n)
cond_uncond.append(c)
is_cond = False
return(cond_uncond[0], cond_uncond[1])