LayerColor: HSV¶
Documentation¶
- Class name:
LayerColor: HSV
- Category:
😺dzNodes/LayerColor
- Output node:
False
This node is designed for color correction in the HSV color space, allowing adjustments to the hue, saturation, and value (brightness) of an image. It enables fine-tuning of image colors to achieve desired visual effects or correct color imbalances.
Input types¶
Required¶
image
- The input image to be color corrected. This parameter is crucial as it determines the base for all subsequent HSV adjustments.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
H
- Specifies the hue adjustment. Positive values shift the hue right, while negative values shift it left, enabling the modification of the image's overall color tone.
- Comfy dtype:
INT
- Python dtype:
int
S
- Determines the saturation level adjustment. Positive values increase saturation, making colors more vivid, while negative values decrease it, leading to a more muted color palette.
- Comfy dtype:
INT
- Python dtype:
int
V
- Controls the value (brightness) adjustment. Positive values make the image brighter, whereas negative values make it darker, affecting the image's lightness or darkness.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
Output types¶
image
- Comfy dtype:
IMAGE
- The output image after applying HSV color corrections. This reflects the adjustments made to hue, saturation, and value, showcasing the color-corrected version of the input image.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ColorCorrectHSV:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"image": ("IMAGE", ), #
"H": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
"S": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
"V": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
},
"optional": {
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'color_correct_HSV'
CATEGORY = '😺dzNodes/LayerColor'
def color_correct_HSV(self, image, H, S, V):
ret_images = []
for i in image:
i = torch.unsqueeze(i,0)
__image = tensor2pil(i)
_h, _s, _v = tensor2pil(i).convert('HSV').split()
if H != 0 :
_h = image_hue_offset(_h, H)
if S != 0 :
_s = image_gray_offset(_s, S)
if V != 0 :
_v = image_gray_offset(_v, V)
ret_image = image_channel_merge((_h, _s, _v), 'HSV')
if __image.mode == 'RGBA':
ret_image = RGB2RGBA(ret_image, __image.split()[-1])
ret_images.append(pil2tensor(ret_image))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)