LayerColor: LAB¶
Documentation¶
- Class name:
LayerColor: LAB
- Category:
😺dzNodes/LayerColor
- Output node:
False
The LayerColor: LAB node is designed for color correction in the LAB color space. It adjusts the L, A, and B channels of an image, allowing for precise control over the lightness, green-red, and blue-yellow components, respectively.
Input types¶
Required¶
image
- The input image to be color corrected. It serves as the base for applying LAB color space adjustments.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
L
- Adjusts the lightness of the image. A positive value increases lightness, while a negative value decreases it.
- Comfy dtype:
INT
- Python dtype:
int
A
- Modifies the green-red axis of the image. Positive values shift towards red, negative values towards green.
- Comfy dtype:
INT
- Python dtype:
int
B
- Alters the blue-yellow axis of the image. Positive values shift towards yellow, negative values towards blue.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
Output types¶
image
- Comfy dtype:
IMAGE
- The color-corrected image in the LAB color space, reflecting adjustments made to the L, A, and B channels.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ColorCorrectLAB:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"image": ("IMAGE", ), #
"L": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
"A": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
"B": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
},
"optional": {
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'color_correct_LAB'
CATEGORY = '😺dzNodes/LayerColor'
def color_correct_LAB(self, image, L, A, B):
ret_images = []
for i in image:
i = torch.unsqueeze(i, 0)
__image = tensor2pil(i)
_l, _a, _b = tensor2pil(i).convert('LAB').split()
if L != 0 :
_l = image_gray_offset(_l, L)
if A != 0 :
_a = image_gray_offset(_a, A)
if B != 0 :
_b = image_gray_offset(_b, B)
ret_image = image_channel_merge((_l, _a, _b), 'LAB')
if __image.mode == 'RGBA':
ret_image = RGB2RGBA(ret_image, __image.split()[-1])
ret_images.append(pil2tensor(ret_image))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)