LayerFilter: ChannelShake¶
Documentation¶
- Class name:
LayerFilter: ChannelShake
- Category:
😺dzNodes/LayerFilter
- Output node:
False
The ChannelShake node applies a unique visual effect to images by shifting the color channels (RGB) in specified directions and distances. This manipulation creates a shaking or displacement effect on the image, offering a creative way to alter the visual appearance based on angle and distance parameters.
Input types¶
Required¶
image
- The input image to apply the channel shake effect. This parameter is crucial for defining the base image on which the effect will be applied.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
distance
- Specifies the distance of the channel shift. This parameter influences the intensity of the shaking effect, with larger values resulting in more pronounced shifts.
- Comfy dtype:
INT
- Python dtype:
int
angle
- Determines the angle at which the channels will be shifted. This affects the direction of the shake effect, allowing for a wide range of visual distortions.
- Comfy dtype:
FLOAT
- Python dtype:
float
mode
- Defines the order in which the RGB channels are shifted. This selection alters the visual outcome of the effect, offering various combinations for creative experimentation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Optional¶
Output types¶
image
- Comfy dtype:
IMAGE
- The output image after applying the channel shake effect. This image showcases the visual transformation achieved through the specified channel shifts.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ChannelShake:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
channel_mode = ['RGB', 'RBG', 'BGR', 'BRG', 'GBR', 'GRB']
return {
"required": {
"image": ("IMAGE", ), #
"distance": ("INT", {"default": 20, "min": 1, "max": 999, "step": 1}), # 距离
"angle": ("FLOAT", {"default": 40, "min": -360, "max": 360, "step": 0.1}), # 角度
"mode": (channel_mode,), # 模式
},
"optional": {
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'channel_shake'
CATEGORY = '😺dzNodes/LayerFilter'
def channel_shake(self, image, distance, angle, mode, ):
ret_images = []
for i in image:
i = torch.unsqueeze(i, 0)
_canvas = tensor2pil(i).convert('RGB')
R, G, B = _canvas.split()
x = int(math.cos(angle) * distance)
y = int(math.sin(angle) * distance)
if mode.startswith('R'):
R = shift_image(R.convert('RGB'), -x, -y).convert('L')
if mode.startswith('G'):
G = shift_image(G.convert('RGB'), -x, -y).convert('L')
if mode.startswith('B'):
B = shift_image(B.convert('RGB'), -x, -y).convert('L')
if mode.endswith('R'):
R = shift_image(R.convert('RGB'), x, y).convert('L')
if mode.endswith('G'):
G = shift_image(G.convert('RGB'), x, y).convert('L')
if mode.endswith('B'):
B = shift_image(B.convert('RGB'), x, y).convert('L')
ret_image = Image.merge('RGB', [R, G, B])
ret_images.append(pil2tensor(ret_image))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)