LayerFilter: GaussianBlur¶
Documentation¶
- Class name:
LayerFilter: GaussianBlur
- Category:
😺dzNodes/LayerFilter
- Output node:
False
The GaussianBlur node applies a Gaussian blur filter to images, effectively smoothing them by reducing high-frequency noise and details. This node is part of the LayerFilter category, focusing on enhancing or modifying the visual appearance of images through blurring techniques.
Input types¶
Required¶
image
- The 'image' parameter represents the input image(s) to be blurred. It is crucial for defining the visual content that will undergo the Gaussian blur transformation.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
blur
- The 'blur' parameter specifies the intensity of the Gaussian blur effect. A higher value results in a more pronounced blurring effect, directly influencing the smoothness of the output image.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
Output types¶
image
- Comfy dtype:
IMAGE
- The output 'image' parameter is the result of applying the Gaussian blur filter to the input image(s), showcasing the transformed visual content with reduced noise and details.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class GaussianBlur:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"image": ("IMAGE", ), #
"blur": ("INT", {"default": 20, "min": 1, "max": 999, "step": 1}), # 模糊
},
"optional": {
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'gaussian_blur'
CATEGORY = '😺dzNodes/LayerFilter'
def gaussian_blur(self, image, blur):
ret_images = []
for i in image:
_canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
ret_images.append(pil2tensor(gaussian_blur(_canvas, blur)))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)