LayerMask: Mask by Color¶
Documentation¶
- Class name:
LayerMask: MaskByColor
- Category:
😺dzNodes/LayerMask
- Output node:
False
The MaskByColor node is designed to generate masks based on specific color criteria within images. It allows for the creation of layer masks by isolating areas that match a given color, with options to adjust the threshold for color matching, invert the mask, and apply gap fixing to improve mask quality.
Input types¶
Required¶
image
- The input image on which the mask generation is based. This image is analyzed to identify areas that match the specified color criteria.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
color
- Specifies the target color for mask generation. This parameter is crucial for determining which areas of the image will be isolated to create the mask.
- Comfy dtype:
COLOR
- Python dtype:
str
color_in_HEX
- A hexadecimal string representing the target color for mask generation. This provides an alternative method for specifying the color, offering flexibility in defining the color criteria.
- Comfy dtype:
STRING
- Python dtype:
str
threshold
- Determines the sensitivity of color matching. A lower threshold results in a more inclusive selection of matching colors, while a higher threshold restricts the match to colors more closely resembling the specified target color.
- Comfy dtype:
INT
- Python dtype:
int
fix_gap
- Activates gap fixing in the mask to close small holes or gaps. This parameter can enhance the mask's quality by ensuring more continuous and coherent masked areas.
- Comfy dtype:
INT
- Python dtype:
int
fix_threshold
- Sets the threshold for gap fixing, controlling the size of gaps to be filled. This parameter works in conjunction with 'fix_gap' to refine the mask's details and overall appearance.
- Comfy dtype:
FLOAT
- Python dtype:
float
invert_mask
- When enabled, inverts the generated mask, swapping the masked and unmasked areas. This option allows for flexibility in selecting either the matching areas or their complements.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Optional¶
mask
- unknown
- Comfy dtype:
MASK
- Python dtype:
unknown
Output types¶
mask
- Comfy dtype:
MASK
- Returns a tensor of the generated mask, isolating areas matching the specified color criteria, adjusted for threshold, inversion, and gap fixing settings.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class MaskByColor:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"color": ("COLOR", {"default": "#FFFFFF"},),
"color_in_HEX": ("STRING", {"default": ""}),
"threshold": ("INT", { "default": 0, "min": 0, "max": 100, "step": 1, }),
"fix_gap": ("INT", {"default": 2, "min": 0, "max": 32, "step": 1}),
"fix_threshold": ("FLOAT", {"default": 0.75, "min": 0.01, "max": 0.99, "step": 0.01}),
"invert_mask": ("BOOLEAN", {"default": False}), # 反转mask
},
"optional": {
"mask": ("MASK",), #
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = "mask_by_color"
CATEGORY = '😺dzNodes/LayerMask'
def mask_by_color(self, image, color, color_in_HEX, threshold,
fix_gap, fix_threshold, invert_mask, mask=None):
if color_in_HEX != "" and color_in_HEX.startswith('#') and len(color_in_HEX) == 7:
color = color_in_HEX
ret_masks = []
l_images = []
l_masks = []
for l in image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
else:
l_masks.append(Image.new('L', m.size, 'white'))
if mask is not None:
if mask.dim() == 2:
mask = torch.unsqueeze(mask, 0)
l_masks = []
for m in mask:
if invert_mask:
m = 1 - m
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
for i in range(len(l_images)):
img = l_images[i] if i < len(l_images) else l_images[-1]
img = tensor2pil(img)
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
mask = Image.new('L', _mask.size, 'black')
mask.paste(create_mask_from_color_tensor(img, color, threshold), mask=_mask)
mask = image2mask(mask)
if invert_mask:
mask = 1 - mask
if fix_gap:
mask = mask_fix(mask, 1, fix_gap, fix_threshold, fix_threshold)
ret_masks.append(mask)
return (torch.cat(ret_masks, dim=0), )