LayerMask: MaskEdgeUltraDetail¶
Documentation¶
- Class name:
LayerMask: MaskEdgeUltraDetail
- Category:
😺dzNodes/LayerMask
- Output node:
False
This node specializes in enhancing the detail and precision of edges in layer masks. It applies advanced image processing techniques to refine mask edges, making them ultra-detailed and precise for improved visual quality in layered compositions.
Input types¶
Required¶
image
- The input image to be processed. This image serves as the base for mask edge enhancement, determining the areas where detail and precision are to be improved.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
mask
- The mask that outlines the areas of the image to be detailed. It acts as a guide for the node to apply edge enhancement, defining the regions where ultra-detailing is necessary.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
method
- Specifies the technique used for mask edge detailing. This parameter influences the approach taken to enhance the mask edges, affecting the outcome's precision and detail.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
mask_grow
- Controls the expansion of the mask edges. This parameter adjusts how much the mask edges are grown to achieve the desired level of detail.
- Comfy dtype:
INT
- Python dtype:
int
fix_gap
- Determines whether to fill gaps in the mask edges. This option helps in creating a more continuous and precise edge by bridging small gaps.
- Comfy dtype:
INT
- Python dtype:
bool
fix_threshold
- Sets the threshold for fixing gaps in the mask edges. It defines the sensitivity of gap detection and filling, impacting the smoothness of the final edge.
- Comfy dtype:
FLOAT
- Python dtype:
float
detail_range
- Defines the range of edge detailing. This parameter sets the extent to which the mask edges are enhanced, affecting the level of detail achieved.
- Comfy dtype:
INT
- Python dtype:
int
black_point
- Adjusts the black point for edge detailing. This setting modifies the darkest areas of the mask, influencing the contrast and depth of the edge detail.
- Comfy dtype:
FLOAT
- Python dtype:
int
white_point
- Adjusts the white point for edge detailing. This setting modifies the lightest areas of the mask, influencing the brightness and highlight of the edge detail.
- Comfy dtype:
FLOAT
- Python dtype:
int
Optional¶
Output types¶
image
- Comfy dtype:
IMAGE
- The processed image with enhanced mask edges. This output reflects the improvements in edge detail and precision, showcasing the node's effect on the original image.
- Python dtype:
torch.Tensor
- Comfy dtype:
mask
- Comfy dtype:
MASK
- The enhanced mask with ultra-detailed edges. This output demonstrates the refined precision and detail achieved through the node's processing.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class MaskEdgeUltraDetail:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
method_list = ['PyMatting', 'OpenCV-GuidedFilter']
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
"method": (method_list,),
"mask_grow": ("INT", {"default": 0, "min": -999, "max": 999, "step": 1}),
"fix_gap": ("INT", {"default": 0, "min": 0, "max": 32, "step": 1}),
"fix_threshold": ("FLOAT", {"default": 0.75, "min": 0.01, "max": 0.99, "step": 0.01}),
"detail_range": ("INT", {"default": 12, "min": 1, "max": 256, "step": 1}),
"black_point": ("FLOAT", {"default": 0.01, "min": 0.01, "max": 0.98, "step": 0.01}),
"white_point": ("FLOAT", {"default": 0.99, "min": 0.02, "max": 0.99, "step": 0.01}),
},
"optional": {
}
}
RETURN_TYPES = ("IMAGE", "MASK", )
RETURN_NAMES = ("image", "mask", )
FUNCTION = "mask_edge_ultra_detail"
CATEGORY = '😺dzNodes/LayerMask'
def mask_edge_ultra_detail(self, image, mask, method, mask_grow, fix_gap, fix_threshold,
detail_range, black_point, white_point,):
ret_images = []
ret_masks = []
l_images = []
l_masks = []
if mask.dim() == 2:
mask = torch.unsqueeze(mask, 0)
for l in image:
l_images.append(torch.unsqueeze(l, 0))
for m in mask:
l_masks.append(torch.unsqueeze(m, 0))
if len(l_images) != len(l_masks) or tensor2pil(l_images[0]).size != tensor2pil(l_masks[0]).size:
log(f"Error: {NODE_NAME} skipped, because mask does'nt match image.", message_type='error')
return (image, mask,)
for i in range(len(l_images)):
_image = l_images[i]
orig_image = tensor2pil(_image).convert('RGB')
_image = pil2tensor(orig_image)
_mask = l_masks[i]
if mask_grow != 0:
_mask = expand_mask(_mask, mask_grow, mask_grow//2)
if fix_gap:
_mask = mask_fix(_mask, 1, fix_gap, fix_threshold, fix_threshold)
if method == 'OpenCV-GuidedFilter':
_mask = guided_filter_alpha(_image, _mask, detail_range)
_mask = tensor2pil(histogram_remap(_mask, black_point, white_point))
else:
_mask = tensor2pil(mask_edge_detail(_image, _mask, detail_range, black_point, white_point))
ret_image = RGB2RGBA(orig_image, _mask.convert('L'))
ret_images.append(pil2tensor(ret_image))
ret_masks.append(image2mask(_mask))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0), torch.cat(ret_masks, dim=0),)