LayerMask: SegmentAnythingUltra¶
Documentation¶
- Class name:
LayerMask: SegmentAnythingUltra
- Category:
😺dzNodes/LayerMask
- Output node:
False
This node specializes in segmenting various objects within an image, leveraging advanced algorithms to accurately distinguish and isolate different elements. It's designed to enhance layer-based editing by providing precise mask generation for any object, facilitating complex image manipulation tasks.
Input types¶
Required¶
image
- The input image to be segmented. This parameter is crucial as it directly influences the segmentation accuracy and the quality of the generated mask.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
sam_model
- Specifies the SAM model used for segmentation, impacting the segmentation's effectiveness and accuracy.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
grounding_dino_model
- Defines the DINO model used for object detection within the image, crucial for identifying objects to segment.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
threshold
- The confidence threshold for object detection, determining which objects are considered for segmentation.
- Comfy dtype:
FLOAT
- Python dtype:
float
detail_range
- A parameter influencing the level of detail in the segmentation process, affecting the mask's precision around object edges.
- Comfy dtype:
INT
- Python dtype:
int
black_point
- Sets the black point for histogram remapping, affecting the contrast and detail of the segmented mask.
- Comfy dtype:
FLOAT
- Python dtype:
int
white_point
- Defines the white point for histogram remapping, adjusting the brightness and detail visibility in the mask.
- Comfy dtype:
FLOAT
- Python dtype:
int
process_detail
- A boolean indicating whether to apply detailed processing to the mask, enhancing edge definition and overall mask quality.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
prompt
- The text prompt used for guiding the object detection process, influencing the specificity and accuracy of detected objects.
- Comfy dtype:
STRING
- Python dtype:
str
Optional¶
Output types¶
image
- Comfy dtype:
IMAGE
- The segmented image with applied mask, showcasing the isolated objects against the original background. This output is crucial for visualizing the segmentation results and for further processing or editing.
- Python dtype:
torch.Tensor
- Comfy dtype:
mask
- Comfy dtype:
MASK
- The output mask generated from the input image, representing the segmented areas. This mask is essential for further image editing and manipulation, providing a clear distinction between different objects within the image.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class SegmentAnythingUltra:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"sam_model": (list_sam_model(), ),
"grounding_dino_model": (list_groundingdino_model(),),
"threshold": ("FLOAT", {"default": 0.3, "min": 0, "max": 1.0, "step": 0.01}),
"detail_range": ("INT", {"default": 16, "min": 1, "max": 256, "step": 1}),
"black_point": ("FLOAT", {"default": 0.15, "min": 0.01, "max": 0.98, "step": 0.01}),
"white_point": ("FLOAT", {"default": 0.99, "min": 0.02, "max": 0.99, "step": 0.01}),
"process_detail": ("BOOLEAN", {"default": True}),
"prompt": ("STRING", {"default": "subject"}),
},
"optional": {
}
}
RETURN_TYPES = ("IMAGE", "MASK", )
RETURN_NAMES = ("image", "mask", )
FUNCTION = "segment_anything_ultra"
CATEGORY = '😺dzNodes/LayerMask'
def segment_anything_ultra(self, image, sam_model, grounding_dino_model, threshold,
detail_range, black_point, white_point, process_detail,
prompt, ):
global SAM_MODEL
global DINO_MODEL
if SAM_MODEL is None: SAM_MODEL = load_sam_model(sam_model)
if DINO_MODEL is None: DINO_MODEL = load_groundingdino_model(grounding_dino_model)
ret_images = []
ret_masks = []
for i in image:
i = torch.unsqueeze(i, 0)
i = pil2tensor(tensor2pil(i).convert('RGB'))
item = tensor2pil(i).convert('RGBA')
boxes = groundingdino_predict(DINO_MODEL, item, prompt, threshold)
if boxes.shape[0] == 0:
break
(_, _mask) = sam_segment(SAM_MODEL, item, boxes)
_mask = _mask[0]
if process_detail:
_mask = tensor2pil(mask_edge_detail(i, _mask, detail_range, black_point, white_point))
else:
_mask = mask2image(_mask)
_image = RGB2RGBA(tensor2pil(i).convert('RGB'), _mask.convert('L'))
ret_images.append(pil2tensor(_image))
ret_masks.append(image2mask(_mask))
if len(ret_masks) == 0:
_, height, width, _ = image.size()
empty_mask = torch.zeros((1, height, width), dtype=torch.uint8, device="cpu")
return (empty_mask, empty_mask)
log(f"{NODE_NAME} Processed {len(ret_masks)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0), torch.cat(ret_masks, dim=0),)