LayerStyle: ColorOverlay V2¶
Documentation¶
- Class name:
LayerStyle: ColorOverlay V2
- Category:
😺dzNodes/LayerStyle
- Output node:
False
The ColorOverlay V2 node applies a color overlay to an image, allowing for the adjustment of blend mode, opacity, and color to achieve various visual effects. It supports the inversion of a mask for more complex layering and styling options.
Input types¶
Required¶
background_image
- Specifies the background image over which the color overlay will be applied. It is a foundational element for the overlay effect.
- Comfy dtype:
IMAGE
- Python dtype:
IMAGE
layer_image
- Defines the layer image to which the color overlay effect will be applied, enabling the creation of layered visual effects.
- Comfy dtype:
IMAGE
- Python dtype:
IMAGE
invert_mask
- Determines whether the mask applied to the layer image should be inverted, offering additional control over the overlay effect.
- Comfy dtype:
BOOLEAN
- Python dtype:
BOOLEAN
blend_mode
- Specifies the blending mode used for combining the color overlay with the layer image, affecting the overall visual outcome. The correct data type should reflect a custom enumeration or selection type, not a standard Python data type.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
Enum or custom type representing blend modes
opacity
- Controls the opacity level of the color overlay, allowing for fine-tuning of the effect's intensity.
- Comfy dtype:
INT
- Python dtype:
INT
color
- Sets the color of the overlay, enabling customization of the visual effect.
- Comfy dtype:
STRING
- Python dtype:
STRING
Optional¶
layer_mask
- Optional mask that can be applied to the layer image for more precise control over the overlay effect.
- Comfy dtype:
MASK
- Python dtype:
MASK
Output types¶
image
- Comfy dtype:
IMAGE
- The resulting image after applying the color overlay effect, incorporating adjustments made through the node's parameters.
- Python dtype:
IMAGE
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ColorOverlayV2:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"background_image": ("IMAGE", ), #
"layer_image": ("IMAGE",), #
"invert_mask": ("BOOLEAN", {"default": True}), # 反转mask
"blend_mode": (chop_mode_v2,), # 混合模式
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), # 透明度
"color": ("STRING", {"default": "#FFBF30"}), # 渐变开始颜色
},
"optional": {
"layer_mask": ("MASK",), #
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'color_overlay_v2'
CATEGORY = '😺dzNodes/LayerStyle'
def color_overlay_v2(self, background_image, layer_image,
invert_mask, blend_mode, opacity, color,
layer_mask=None
):
b_images = []
l_images = []
l_masks = []
ret_images = []
for b in background_image:
b_images.append(torch.unsqueeze(b, 0))
for l in layer_image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
if layer_mask is not None:
if layer_mask.dim() == 2:
layer_mask = torch.unsqueeze(layer_mask, 0)
l_masks = []
for m in layer_mask:
if invert_mask:
m = 1 - m
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
if len(l_masks) == 0:
log(f"Error: {NODE_NAME} skipped, because the available mask is not found.", message_type='error')
return (background_image,)
max_batch = max(len(b_images), len(l_images), len(l_masks))
_color = Image.new("RGB", tensor2pil(l_images[0]).size, color=color)
for i in range(max_batch):
background_image = b_images[i] if i < len(b_images) else b_images[-1]
layer_image = l_images[i] if i < len(l_images) else l_images[-1]
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
# preprocess
_canvas = tensor2pil(background_image).convert('RGB')
_layer = tensor2pil(layer_image).convert('RGB')
if _mask.size != _layer.size:
_mask = Image.new('L', _layer.size, 'white')
log(f"Warning: {NODE_NAME} mask mismatch, dropped!", message_type='warning')
# 合成layer
_comp = chop_image_v2(_layer, _color, blend_mode, opacity)
_canvas.paste(_comp, mask=_mask)
ret_images.append(pil2tensor(_canvas))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)