LayerStyle: InnerGlow¶
Documentation¶
- Class name:
LayerStyle: InnerGlow
- Category:
😺dzNodes/LayerStyle
- Output node:
False
The InnerGlow node applies an inner glow effect to images, enhancing visuals by adding a soft light from within the subject. This effect can be used to create depth or highlight elements in a composition, contributing to the overall aesthetic appeal.
Input types¶
Required¶
background_image
- The 'background_image' input serves as the base layer onto which the inner glow effect is applied, providing the context and foundation for the effect.
- Comfy dtype:
IMAGE
- Python dtype:
Image
layer_image
- The 'layer_image' input specifies the target layer within the background image to which the inner glow effect will be applied, allowing for precise control over the effect's placement.
- Comfy dtype:
IMAGE
- Python dtype:
Image
invert_mask
- The 'invert_mask' input determines whether the mask applied to the layer image should be inverted, affecting how the inner glow effect interacts with the image's transparency.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
blend_mode
- The 'blend_mode' input allows for the selection of blending modes that determine how the inner glow effect combines with the underlying images, offering various visual outcomes.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
opacity
- The 'opacity' input controls the transparency level of the inner glow effect, enabling fine-tuning of its visual impact on the final image.
- Comfy dtype:
INT
- Python dtype:
int
brightness
- The 'brightness' input adjusts the intensity of the inner glow effect, influencing the overall luminosity and visibility of the effect.
- Comfy dtype:
INT
- Python dtype:
int
glow_range
- The 'glow_range' input specifies the spread of the inner glow effect, determining how far the effect extends from the edges of the layer image.
- Comfy dtype:
INT
- Python dtype:
int
blur
- The 'blur' input defines the level of blur applied to the inner glow effect, contributing to the softness and diffusion of the light.
- Comfy dtype:
INT
- Python dtype:
int
light_color
- The 'light_color' input sets the color of the light at the center of the inner glow effect, allowing for customization of the effect's hue.
- Comfy dtype:
STRING
- Python dtype:
str
glow_color
- The 'glow_color' input determines the color of the outer edge of the inner glow effect, enabling the creation of a gradient or solid color glow.
- Comfy dtype:
STRING
- Python dtype:
str
Optional¶
layer_mask
- The 'layer_mask' input (optional) provides an additional masking layer to further refine where the inner glow effect is applied, enhancing the precision of the effect's application.
- Comfy dtype:
MASK
- Python dtype:
Mask
Output types¶
image
- Comfy dtype:
IMAGE
- The output 'image' showcases the enhanced visual appeal of the background image with the applied inner glow effect, reflecting the successful integration of the effect.
- Python dtype:
Image
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class InnerGlow:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
chop_mode = ['screen', 'add', 'lighter', 'normal', 'multply', 'subtract','difference','darker',
'color_burn', 'color_dodge', 'linear_burn', 'linear_dodge', 'overlay',
'soft_light', 'hard_light', 'vivid_light', 'pin_light', 'linear_light', 'hard_mix']
return {
"required": {
"background_image": ("IMAGE", ), #
"layer_image": ("IMAGE",), #
"invert_mask": ("BOOLEAN", {"default": True}), # 反转mask
"blend_mode": (chop_mode,), # 混合模式
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), # 透明度
"brightness": ("INT", {"default": 5, "min": 2, "max": 20, "step": 1}), # 迭代
"glow_range": ("INT", {"default": 48, "min": -9999, "max": 9999, "step": 1}), # 扩张
"blur": ("INT", {"default": 25, "min": 0, "max": 9999, "step": 1}), # 扩张
"light_color": ("STRING", {"default": "#FFBF30"}), # 光源中心颜色
"glow_color": ("STRING", {"default": "#FE0000"}), # 辉光外围颜色
},
"optional": {
"layer_mask": ("MASK",), #
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'inner_glow'
CATEGORY = '😺dzNodes/LayerStyle'
def inner_glow(self, background_image, layer_image,
invert_mask, blend_mode, opacity,
brightness, glow_range, blur, light_color, glow_color,
layer_mask=None
):
b_images = []
l_images = []
l_masks = []
ret_images = []
for b in background_image:
b_images.append(torch.unsqueeze(b, 0))
for l in layer_image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
if layer_mask is not None:
if layer_mask.dim() == 2:
layer_mask = torch.unsqueeze(layer_mask, 0)
l_masks = []
for m in layer_mask:
if invert_mask:
m = 1 - m
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
if len(l_masks) == 0:
log(f"Error: {NODE_NAME} skipped, because the available mask is not found.", message_type='error')
return (background_image,)
max_batch = max(len(b_images), len(l_images), len(l_masks))
for i in range(max_batch):
background_image = b_images[i] if i < len(b_images) else b_images[-1]
layer_image = l_images[i] if i < len(l_images) else l_images[-1]
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
# preprocess
_canvas = tensor2pil(background_image).convert('RGB')
_layer = tensor2pil(layer_image).convert('RGB')
if _mask.size != _layer.size:
_mask = Image.new('L', _layer.size, 'white')
log(f"Warning: {NODE_NAME} mask mismatch, dropped!", message_type='warning')
blur_factor = blur / 20.0
grow = glow_range
inner_mask = _mask
for x in range(brightness):
blur = int(grow * blur_factor)
_color = step_color(glow_color, light_color, brightness, x)
glow_mask = expand_mask(image2mask(inner_mask), -grow, blur) #扩张,模糊
# 合成glow
color_image = Image.new("RGB", _layer.size, color=_color)
alpha = tensor2pil(mask_invert(glow_mask)).convert('L')
_glow = chop_image(_layer, color_image, blend_mode, int(step_value(1, opacity, brightness, x)))
_layer.paste(_glow, mask=alpha)
grow = grow - int(glow_range/brightness)
# 合成layer
_layer.paste(_canvas, mask=ImageChops.invert(_mask))
ret_images.append(pil2tensor(_layer))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)