LayerStyle: OuterGlow¶
Documentation¶
- Class name:
LayerStyle: OuterGlow
- Category:
😺dzNodes/LayerStyle
- Output node:
False
The OuterGlow node applies an outer glow effect to images, enhancing their visual appeal by adding a soft, diffused light around their borders. This node is designed to stylize images by simulating the effect of a light source illuminating the outer edges, creating a distinctive glow that can be customized to fit various aesthetic requirements.
Input types¶
Required¶
background_image
- The 'background_image' input specifies the base image to which the outer glow effect will be applied. It serves as the foundational layer for the effect.
- Comfy dtype:
IMAGE
- Python dtype:
IMAGE
layer_image
- The 'layer_image' input represents the image layer that will receive the outer glow effect. This layer is superimposed on the background image to create the glow effect.
- Comfy dtype:
IMAGE
- Python dtype:
IMAGE
invert_mask
- The 'invert_mask' input determines whether the mask applied to the layer image should be inverted, affecting how the glow effect is masked around the image.
- Comfy dtype:
BOOLEAN
- Python dtype:
BOOLEAN
blend_mode
- The 'blend_mode' input specifies the blending mode used to combine the layer image with the outer glow, influencing the overall appearance of the effect.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
STRING
opacity
- The 'opacity' input controls the transparency of the outer glow effect, allowing for fine-tuning of its visibility against the background image.
- Comfy dtype:
INT
- Python dtype:
INT
brightness
- The 'brightness' input adjusts the intensity of the glow effect, affecting how brightly the glow appears around the layer image.
- Comfy dtype:
INT
- Python dtype:
INT
glow_range
- The 'glow_range' input defines the spread of the outer glow effect, determining how far the glow extends from the edges of the layer image.
- Comfy dtype:
INT
- Python dtype:
INT
blur
- The 'blur' input sets the level of blur applied to the outer glow, softening the edges of the glow for a more diffused appearance.
- Comfy dtype:
INT
- Python dtype:
INT
light_color
- The 'light_color' input specifies the color at the center of the glow effect, contributing to the overall color scheme of the glow.
- Comfy dtype:
STRING
- Python dtype:
STRING
glow_color
- The 'glow_color' input determines the color of the outer edges of the glow, allowing for a gradient effect from the center to the outskirts of the glow.
- Comfy dtype:
STRING
- Python dtype:
STRING
Optional¶
layer_mask
- The 'layer_mask' input allows for an additional masking layer to be applied to the layer image, providing further control over how the glow effect is applied and integrated with the image.
- Comfy dtype:
MASK
- Python dtype:
MASK
Output types¶
image
- Comfy dtype:
IMAGE
- The 'image' output type represents the final image with the applied outer glow effect, showcasing the enhanced visual appeal with a soft, diffused light around its borders.
- Python dtype:
IMAGE
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class OuterGlow:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
chop_mode = ['screen', 'add', 'lighter', 'normal', 'multply', 'subtract', 'difference', 'darker',
'color_burn', 'color_dodge', 'linear_burn', 'linear_dodge', 'overlay',
'soft_light', 'hard_light', 'vivid_light', 'pin_light', 'linear_light', 'hard_mix']
return {
"required": {
"background_image": ("IMAGE", ), #
"layer_image": ("IMAGE",), #
"invert_mask": ("BOOLEAN", {"default": True}), # 反转mask
"blend_mode": (chop_mode,), # 混合模式
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), # 透明度
"brightness": ("INT", {"default": 5, "min": 2, "max": 20, "step": 1}), # 迭代
"glow_range": ("INT", {"default": 48, "min": -9999, "max": 9999, "step": 1}), # 扩张
"blur": ("INT", {"default": 25, "min": 0, "max": 9999, "step": 1}), # 扩张
"light_color": ("STRING", {"default": "#FFBF30"}), # 光源中心颜色
"glow_color": ("STRING", {"default": "#FE0000"}), # 辉光外围颜色
},
"optional": {
"layer_mask": ("MASK",), #
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'outer_glow'
CATEGORY = '😺dzNodes/LayerStyle'
def outer_glow(self, background_image, layer_image,
invert_mask, blend_mode, opacity,
brightness, glow_range, blur, light_color, glow_color,
layer_mask=None
):
b_images = []
l_images = []
l_masks = []
ret_images = []
for b in background_image:
b_images.append(torch.unsqueeze(b, 0))
for l in layer_image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
if layer_mask is not None:
if layer_mask.dim() == 2:
layer_mask = torch.unsqueeze(layer_mask, 0)
l_masks = []
for m in layer_mask:
if invert_mask:
m = 1 - m
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
if len(l_masks) == 0:
log(f"Error: {NODE_NAME} skipped, because the available mask is not found.", message_type='error')
return (background_image,)
max_batch = max(len(b_images), len(l_images), len(l_masks))
blur_factor = blur / 20.0
for i in range(max_batch):
background_image = b_images[i] if i < len(b_images) else b_images[-1]
layer_image = l_images[i] if i < len(l_images) else l_images[-1]
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
# preprocess
_canvas = tensor2pil(background_image).convert('RGB')
_layer = tensor2pil(layer_image).convert('RGB')
if _mask.size != _layer.size:
_mask = Image.new('L', _layer.size, 'white')
log(f"Warning: {NODE_NAME} mask mismatch, dropped!", message_type='warning')
grow = glow_range
for x in range(brightness):
blur = int(grow * blur_factor)
_color = step_color(glow_color, light_color, brightness, x)
glow_mask = expand_mask(image2mask(_mask), grow, blur) #扩张,模糊
# 合成glow
color_image = Image.new("RGB", _layer.size, color=_color)
alpha = tensor2pil(glow_mask).convert('L')
_glow = chop_image(_canvas, color_image, blend_mode, int(step_value(1, opacity, brightness, x)))
_canvas.paste(_glow.convert('RGB'), mask=alpha)
grow = grow - int(glow_range/brightness)
# 合成layer
_canvas.paste(_layer, mask=_mask)
ret_images.append(pil2tensor(_canvas))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)