LayerStyle: Stroke V2¶
Documentation¶
- Class name:
LayerStyle: Stroke V2
- Category:
😺dzNodes/LayerStyle
- Output node:
False
The Stroke V2 node is designed to apply advanced stroke effects to images within a layer-based design system. It enhances visual aesthetics by allowing for detailed customization of stroke properties such as color, width, and blending modes.
Input types¶
Required¶
background_image
- The background image over which the stroke effect will be applied. It serves as the canvas for the stroke enhancements.
- Comfy dtype:
IMAGE
- Python dtype:
IMAGE
layer_image
- The layer image to which the stroke effect will be directly applied. This image is modified based on the stroke settings.
- Comfy dtype:
IMAGE
- Python dtype:
IMAGE
invert_mask
- A boolean parameter that determines whether the mask applied to the layer image should be inverted, affecting the area where the stroke is applied.
- Comfy dtype:
BOOLEAN
- Python dtype:
BOOLEAN
blend_mode
- Specifies the blending mode used to combine the stroke effect with the layer image, influencing the final visual outcome.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
STRING
opacity
- Controls the opacity level of the stroke effect, allowing for fine-tuning of its visibility on the layer image.
- Comfy dtype:
INT
- Python dtype:
INT
stroke_grow
- Determines the growth or shrinkage of the stroke effect relative to the original layer boundaries, enabling more precise control over the effect's spread.
- Comfy dtype:
INT
- Python dtype:
INT
stroke_width
- Sets the width of the stroke effect, defining the thickness of the applied stroke around the layer image.
- Comfy dtype:
INT
- Python dtype:
INT
blur
- Adjusts the blur intensity of the stroke effect, offering the ability to soften or sharpen the edges of the stroke.
- Comfy dtype:
INT
- Python dtype:
INT
stroke_color
- Defines the color of the stroke effect, allowing for customization to match the design's color scheme.
- Comfy dtype:
STRING
- Python dtype:
STRING
Optional¶
layer_mask
- An optional mask that can be applied to the layer image, defining specific areas where the stroke effect should or should not be applied.
- Comfy dtype:
MASK
- Python dtype:
MASK
Output types¶
image
- Comfy dtype:
IMAGE
- The resulting image after applying the stroke V2 effect, showcasing the enhanced visual layer with the specified stroke properties.
- Python dtype:
IMAGE
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class StrokeV2:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"background_image": ("IMAGE", ), #
"layer_image": ("IMAGE",), #
"invert_mask": ("BOOLEAN", {"default": True}), # 反转mask
"blend_mode": (chop_mode_v2,), # 混合模式
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), # 透明度
"stroke_grow": ("INT", {"default": 0, "min": -999, "max": 999, "step": 1}), # 收缩值
"stroke_width": ("INT", {"default": 8, "min": 0, "max": 999, "step": 1}), # 扩张值
"blur": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}), # 模糊
"stroke_color": ("STRING", {"default": "#FF0000"}), # 描边颜色
},
"optional": {
"layer_mask": ("MASK",), #
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'stroke_v2'
CATEGORY = '😺dzNodes/LayerStyle'
def stroke_v2(self, background_image, layer_image,
invert_mask, blend_mode, opacity,
stroke_grow, stroke_width, blur, stroke_color,
layer_mask=None
):
b_images = []
l_images = []
l_masks = []
ret_images = []
for b in background_image:
b_images.append(torch.unsqueeze(b, 0))
for l in layer_image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
if layer_mask is not None:
if layer_mask.dim() == 2:
layer_mask = torch.unsqueeze(layer_mask, 0)
l_masks = []
for m in layer_mask:
if invert_mask:
m = 1 - m
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
if len(l_masks) == 0:
log(f"Error: {NODE_NAME} skipped, because the available mask is not found.", message_type='error')
return (background_image,)
max_batch = max(len(b_images), len(l_images), len(l_masks))
grow_offset = int(stroke_width / 2)
inner_stroke = stroke_grow - grow_offset
outer_stroke = inner_stroke + stroke_width
for i in range(max_batch):
background_image = b_images[i] if i < len(b_images) else b_images[-1]
layer_image = l_images[i] if i < len(l_images) else l_images[-1]
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
# preprocess
_canvas = tensor2pil(background_image).convert('RGB')
_layer = tensor2pil(layer_image).convert('RGB')
if _mask.size != _layer.size:
_mask = Image.new('L', _layer.size, 'white')
log(f"Warning: {NODE_NAME} mask mismatch, dropped!", message_type='warning')
inner_mask = expand_mask(image2mask(_mask), inner_stroke, blur)
outer_mask = expand_mask(image2mask(_mask), outer_stroke, blur)
stroke_mask = subtract_mask(outer_mask, inner_mask)
color_image = Image.new('RGB', size=_layer.size, color=stroke_color)
blend_image = chop_image_v2(_layer, color_image, blend_mode, opacity)
_canvas.paste(_layer, mask=_mask)
_canvas.paste(blend_image, mask=tensor2pil(stroke_mask))
ret_images.append(pil2tensor(_canvas))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)