LayerUtility: H/L Frequency Detail Restore¶
Documentation¶
- Class name:
LayerUtility: HLFrequencyDetailRestore
- Category:
😺dzNodes/LayerUtility
- Output node:
False
The HLFrequencyDetailRestore node is designed to enhance image details by restoring high and low frequency components. It allows for the manipulation of image textures and details through frequency-based adjustments, providing a means to fine-tune the visual quality of images in a layer-wise manner.
Input types¶
Required¶
image
- The primary image to which frequency detail restoration will be applied. It serves as the base layer for the operation.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
detail_image
- An image containing the details to be restored into the primary image. This image is used to extract high-frequency components.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
keep_high_freq
- Determines the intensity of high-frequency details to be preserved in the detail image.
- Comfy dtype:
INT
- Python dtype:
int
erase_low_freq
- Specifies the level of low-frequency details to be erased from the primary image before merging with high-frequency details.
- Comfy dtype:
INT
- Python dtype:
int
mask_blur
- Applies a blur to the mask, if provided, to smooth the edges of the applied details.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
mask
- An optional mask to specify areas of the image where detail restoration should be applied.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
Output types¶
image
- Comfy dtype:
IMAGE
- The resulting image after applying high and low frequency detail restoration.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class HLFrequencyDetailRestore:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"image": ("IMAGE",),
"detail_image": ("IMAGE",),
"keep_high_freq": ("INT", {"default": 64, "min": 0, "max": 1023}),
"erase_low_freq": ("INT", {"default": 32, "min": 0, "max": 1023}),
"mask_blur": ("INT", {"default": 16, "min": 0, "max": 1023}),
},
"optional": {
"mask": ("MASK",), #
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'hl_frequency_detail_restore'
CATEGORY = '😺dzNodes/LayerUtility'
def hl_frequency_detail_restore(self, image, detail_image, keep_high_freq, erase_low_freq, mask_blur, mask=None):
b_images = []
l_images = []
l_masks = []
ret_images = []
for b in image:
b_images.append(torch.unsqueeze(b, 0))
for l in detail_image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
else:
l_masks.append(Image.new('L', m.size, 'white'))
if mask is not None:
if mask.dim() == 2:
mask = torch.unsqueeze(mask, 0)
l_masks = []
for m in mask:
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
max_batch = max(len(b_images), len(l_images), len(l_masks))
for i in range(max_batch):
background_image = b_images[i] if i < len(b_images) else b_images[-1]
background_image = tensor2pil(background_image).convert('RGB')
detail_image = l_images[i] if i < len(l_images) else l_images[-1]
detail_image = tensor2pil(detail_image).convert('RGB')
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
high_ferq = chop_image_v2(ImageChops.invert(detail_image),
gaussian_blur(detail_image, keep_high_freq),
blend_mode='normal', opacity=50)
high_ferq = ImageChops.invert(high_ferq)
if erase_low_freq:
low_freq = gaussian_blur(background_image, erase_low_freq)
else:
low_freq = background_image.copy()
ret_image = chop_image_v2(low_freq, high_ferq, blend_mode="linear light", opacity=100)
_mask = ImageChops.invert(_mask)
if mask_blur > 0:
_mask = gaussian_blur(_mask, mask_blur)
ret_image.paste(background_image, _mask)
ret_images.append(pil2tensor(ret_image))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)