LayerUtility: ImageBlendAdvance V2¶
Documentation¶
- Class name:
LayerUtility: ImageBlendAdvance V2
- Category:
😺dzNodes/LayerUtility
- Output node:
False
This node specializes in advanced blending techniques for layer-based image editing. It leverages sophisticated algorithms to merge images, allowing for more complex and nuanced image compositions than its predecessor.
Input types¶
Required¶
background_image
- The primary image over which the layer image will be blended, serving as the backdrop for the composition.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
layer_image
- The secondary image to be blended onto the background image, acting as the overlay in the composition.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
invert_mask
- A boolean value that determines whether the mask applied to the layer image should be inverted, affecting the blending areas.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
blend_mode
- Specifies the method of blending used to combine the background and layer images, influencing the visual outcome of the blend.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
opacity
- An integer defining the opacity level of the layer image, dictating its transparency when blended with the background image.
- Comfy dtype:
INT
- Python dtype:
int
x_percent
- A float value indicating the horizontal positioning of the layer image relative to the background image, as a percentage.
- Comfy dtype:
FLOAT
- Python dtype:
float
y_percent
- A float value indicating the vertical positioning of the layer image relative to the background image, as a percentage.
- Comfy dtype:
FLOAT
- Python dtype:
float
mirror
- Specifies the mirror mode applied to the layer image, such as horizontal or vertical flipping, before blending.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scale
- A float value that determines the scaling factor of the layer image, affecting its size relative to the background image.
- Comfy dtype:
FLOAT
- Python dtype:
float
aspect_ratio
- A float value that adjusts the aspect ratio of the layer image, influencing its proportions when scaled.
- Comfy dtype:
FLOAT
- Python dtype:
float
rotate
- A float value specifying the rotation angle of the layer image, in degrees, applied before blending.
- Comfy dtype:
FLOAT
- Python dtype:
float
transform_method
- Defines the interpolation method used for scaling and rotating the layer image, affecting the quality of the transformation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
anti_aliasing
- An integer indicating the level of anti-aliasing applied to the layer image, enhancing the smoothness of its edges.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
layer_mask
- An optional mask that can be applied to the layer image, allowing for more precise control over which parts of the layer are visible or blended.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
Output types¶
image
- Comfy dtype:
IMAGE
- The resulting image after blending the layer image with the background, incorporating all specified adjustments and effects.
- Python dtype:
torch.Tensor
- Comfy dtype:
mask
- Comfy dtype:
MASK
- The mask applied to the layer image, determining the areas of the layer that are visible or blended in the final composition.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ImageBlendAdvanceV2:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
mirror_mode = ['None', 'horizontal', 'vertical']
method_mode = ['lanczos', 'bicubic', 'hamming', 'bilinear', 'box', 'nearest']
return {
"required": {
"background_image": ("IMAGE", ), #
"layer_image": ("IMAGE",), #
"invert_mask": ("BOOLEAN", {"default": True}), # 反转mask
"blend_mode": (chop_mode_v2,), # 混合模式
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), # 透明度
"x_percent": ("FLOAT", {"default": 50, "min": -999, "max": 999, "step": 0.01}),
"y_percent": ("FLOAT", {"default": 50, "min": -999, "max": 999, "step": 0.01}),
"mirror": (mirror_mode,), # 镜像翻转
"scale": ("FLOAT", {"default": 1, "min": 0.01, "max": 100, "step": 0.01}),
"aspect_ratio": ("FLOAT", {"default": 1, "min": 0.01, "max": 100, "step": 0.01}),
"rotate": ("FLOAT", {"default": 0, "min": -999999, "max": 999999, "step": 0.01}),
"transform_method": (method_mode,),
"anti_aliasing": ("INT", {"default": 0, "min": 0, "max": 16, "step": 1}),
},
"optional": {
"layer_mask": ("MASK",), #
}
}
RETURN_TYPES = ("IMAGE", "MASK")
RETURN_NAMES = ("image", "mask")
FUNCTION = 'image_blend_advance_v2'
CATEGORY = '😺dzNodes/LayerUtility'
def image_blend_advance_v2(self, background_image, layer_image,
invert_mask, blend_mode, opacity,
x_percent, y_percent,
mirror, scale, aspect_ratio, rotate,
transform_method, anti_aliasing,
layer_mask=None
):
b_images = []
l_images = []
l_masks = []
ret_images = []
ret_masks = []
for b in background_image:
b_images.append(torch.unsqueeze(b, 0))
for l in layer_image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
else:
l_masks.append(Image.new('L', m.size, 'white'))
if layer_mask is not None:
if layer_mask.dim() == 2:
layer_mask = torch.unsqueeze(layer_mask, 0)
l_masks = []
for m in layer_mask:
if invert_mask:
m = 1 - m
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
max_batch = max(len(b_images), len(l_images), len(l_masks))
for i in range(max_batch):
background_image = b_images[i] if i < len(b_images) else b_images[-1]
layer_image = l_images[i] if i < len(l_images) else l_images[-1]
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
# preprocess
_canvas = tensor2pil(background_image).convert('RGB')
_layer = tensor2pil(layer_image)
if _mask.size != _layer.size:
_mask = Image.new('L', _layer.size, 'white')
log(f"Warning: {NODE_NAME} mask mismatch, dropped!", message_type='warning')
orig_layer_width = _layer.width
orig_layer_height = _layer.height
_mask = _mask.convert("RGB")
target_layer_width = int(orig_layer_width * scale)
target_layer_height = int(orig_layer_height * scale * aspect_ratio)
# mirror
if mirror == 'horizontal':
_layer = _layer.transpose(Image.FLIP_LEFT_RIGHT)
_mask = _mask.transpose(Image.FLIP_LEFT_RIGHT)
elif mirror == 'vertical':
_layer = _layer.transpose(Image.FLIP_TOP_BOTTOM)
_mask = _mask.transpose(Image.FLIP_TOP_BOTTOM)
# scale
_layer = _layer.resize((target_layer_width, target_layer_height))
_mask = _mask.resize((target_layer_width, target_layer_height))
# rotate
_layer, _mask, _ = image_rotate_extend_with_alpha(_layer, rotate, _mask, transform_method, anti_aliasing)
# 处理位置
x = int(_canvas.width * x_percent / 100 - _layer.width / 2)
y = int(_canvas.height * y_percent / 100 - _layer.height / 2)
# composit layer
_comp = copy.copy(_canvas)
_compmask = Image.new("RGB", _comp.size, color='black')
_comp.paste(_layer, (x, y))
_compmask.paste(_mask, (x, y))
_compmask = _compmask.convert('L')
_comp = chop_image_v2(_canvas, _comp, blend_mode, opacity)
# composition background
_canvas.paste(_comp, mask=_compmask)
ret_images.append(pil2tensor(_canvas))
ret_masks.append(image2mask(_compmask))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0), torch.cat(ret_masks, dim=0),)