LayerUtility: LayerImageTransform¶
Documentation¶
- Class name:
LayerUtility: LayerImageTransform
- Category:
😺dzNodes/LayerUtility
- Output node:
False
The LayerImageTransform node is designed to perform various image transformations on a given layer, including scaling, rotating, mirroring, and applying anti-aliasing. It allows for precise adjustments to an image's appearance, enabling the creation of customized visual effects and adjustments.
Input types¶
Required¶
image
- The input image to be transformed. It serves as the base for all subsequent transformations, including scaling, rotating, and mirroring.
- Comfy dtype:
IMAGE
- Python dtype:
IMAGE
x
- The horizontal offset to apply after transformations, allowing for precise positioning of the transformed image.
- Comfy dtype:
INT
- Python dtype:
int
y
- The vertical offset to apply after transformations, enabling precise vertical positioning of the transformed image.
- Comfy dtype:
INT
- Python dtype:
int
mirror
- Specifies the mirroring mode to apply to the image, such as horizontal or vertical flipping, enhancing the image's symmetry or creating reflections.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scale
- The scaling factor to apply to the image, adjusting its size while preserving its aspect ratio.
- Comfy dtype:
FLOAT
- Python dtype:
float
aspect_ratio
- The aspect ratio to maintain during scaling, allowing for proportional adjustments to the image's dimensions.
- Comfy dtype:
FLOAT
- Python dtype:
float
rotate
- The rotation angle in degrees to apply to the image, enabling orientation adjustments.
- Comfy dtype:
FLOAT
- Python dtype:
float
transform_method
- The method used for image transformation, such as resizing or rotating, affecting the image's quality and appearance.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
anti_aliasing
- The level of anti-aliasing to apply, reducing the appearance of jagged edges in the transformed image.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
Output types¶
image
- Comfy dtype:
IMAGE
- The transformed image after applying scaling, rotating, mirroring, and anti-aliasing effects.
- Python dtype:
IMAGE
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class LayerImageTransform:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
mirror_mode = ['None', 'horizontal', 'vertical']
method_mode = ['lanczos', 'bicubic', 'hamming', 'bilinear', 'box', 'nearest']
return {
"required": {
"image": ("IMAGE",), #
"x": ("INT", {"default": 0, "min": -99999, "max": 99999, "step": 1}),
"y": ("INT", {"default": 0, "min": -99999, "max": 99999, "step": 1}),
"mirror": (mirror_mode,), # 镜像翻转
"scale": ("FLOAT", {"default": 1, "min": 0.01, "max": 100, "step": 0.01}),
"aspect_ratio": ("FLOAT", {"default": 1, "min": 0.01, "max": 100, "step": 0.01}),
"rotate": ("FLOAT", {"default": 0, "min": -999999, "max": 999999, "step": 0.01}),
"transform_method": (method_mode,),
"anti_aliasing": ("INT", {"default": 2, "min": 0, "max": 16, "step": 1}),
},
"optional": {
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'layer_image_transform'
CATEGORY = '😺dzNodes/LayerUtility'
def layer_image_transform(self, image, x, y, mirror, scale, aspect_ratio, rotate,
transform_method, anti_aliasing,
):
l_images = []
l_masks = []
ret_images = []
for l in image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
for i in range(len(l_images)):
layer_image = l_images[i] if i < len(l_images) else l_images[-1]
_image = tensor2pil(layer_image).convert('RGB')
if i < len(l_masks):
_mask = l_masks[i]
else:
_mask = Image.new('L', size=_image.size, color='white')
_image_canvas = Image.new('RGB', size=_image.size, color='black')
_mask_canvas = Image.new('L', size=_mask.size, color='black')
orig_layer_width = _image.width
orig_layer_height = _image.height
target_layer_width = int(orig_layer_width * scale)
target_layer_height = int(orig_layer_height * scale * aspect_ratio)
# mirror
if mirror == 'horizontal':
_image = _image.transpose(Image.FLIP_LEFT_RIGHT)
_mask = _mask.transpose(Image.FLIP_LEFT_RIGHT)
elif mirror == 'vertical':
_image = _image.transpose(Image.FLIP_TOP_BOTTOM)
_mask = _mask.transpose(Image.FLIP_TOP_BOTTOM)
# scale
_image = _image.resize((target_layer_width, target_layer_height))
_mask = _mask.resize((target_layer_width, target_layer_height))
# rotate
_image, _mask, _ = image_rotate_extend_with_alpha(_image, rotate, _mask, transform_method, anti_aliasing)
# composit layer
paste_x = (orig_layer_width - _image.width) // 2 + x
paste_y = (orig_layer_height - _image.height) // 2 + y
_image_canvas.paste(_image, (paste_x, paste_y))
_mask_canvas.paste(_mask, (paste_x, paste_y))
if tensor2pil(layer_image).mode == 'RGBA':
_image_canvas = RGB2RGBA(_image_canvas, _mask_canvas)
ret_images.append(pil2tensor(_image_canvas))
log(f"{NODE_NAME} Processed {len(l_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)