LayerUtility: ImageBlend¶
Documentation¶
- Class name:
LayerUtility: ImageBlend
- Category:
😺dzNodes/LayerUtility
- Output node:
False
This node is designed to blend two images together using a variety of blending modes. It leverages predefined functions to apply different mathematical operations for combining the pixel values of the background and layer images, resulting in a composite image that can be used for various visual effects or image processing tasks.
Input types¶
Required¶
background_image
- The background image over which the layer image will be blended. This forms the base of the composite image.
- Comfy dtype:
IMAGE
- Python dtype:
Image
layer_image
- The layer image to be blended onto the background image. This image is combined with the background based on the specified blend mode and opacity.
- Comfy dtype:
IMAGE
- Python dtype:
Image
invert_mask
- A boolean parameter that determines whether the mask applied to the layer image should be inverted, affecting how the blend is applied.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
blend_mode
- Specifies the method of blending the layer image with the background. Different modes can produce various visual effects.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
opacity
- Controls the transparency of the layer image, allowing for finer control over the blend intensity.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
layer_mask
- An optional mask that can be applied to the layer image, defining which parts of the layer should be visible in the final blend.
- Comfy dtype:
MASK
- Python dtype:
Mask
Output types¶
image
- Comfy dtype:
IMAGE
- The result of blending the layer image with the background image according to the specified parameters.
- Python dtype:
Image
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ImageBlend:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
return {
"required": {
"background_image": ("IMAGE", ), #
"layer_image": ("IMAGE",), #
"invert_mask": ("BOOLEAN", {"default": True}), # 反转mask
"blend_mode": (chop_mode,), # 混合模式
"opacity": ("INT", {"default": 100, "min": 0, "max": 100, "step": 1}), # 透明度
},
"optional": {
"layer_mask": ("MASK",), #
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("image",)
FUNCTION = 'image_blend'
CATEGORY = '😺dzNodes/LayerUtility'
def image_blend(self, background_image, layer_image,
invert_mask, blend_mode, opacity,
layer_mask=None
):
b_images = []
l_images = []
l_masks = []
ret_images = []
for b in background_image:
b_images.append(torch.unsqueeze(b, 0))
for l in layer_image:
l_images.append(torch.unsqueeze(l, 0))
m = tensor2pil(l)
if m.mode == 'RGBA':
l_masks.append(m.split()[-1])
else:
l_masks.append(Image.new('L', m.size, 'white'))
if layer_mask is not None:
if layer_mask.dim() == 2:
layer_mask = torch.unsqueeze(layer_mask, 0)
l_masks = []
for m in layer_mask:
if invert_mask:
m = 1 - m
l_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
max_batch = max(len(b_images), len(l_images), len(l_masks))
for i in range(max_batch):
background_image = b_images[i] if i < len(b_images) else b_images[-1]
layer_image = l_images[i] if i < len(l_images) else l_images[-1]
_mask = l_masks[i] if i < len(l_masks) else l_masks[-1]
_canvas = tensor2pil(background_image).convert('RGB')
_layer = tensor2pil(layer_image).convert('RGB')
if _mask.size != _layer.size:
_mask = Image.new('L', _layer.size, 'white')
log(f"Warning: {NODE_NAME} mask mismatch, dropped!", message_type='warning')
# 合成layer
_comp = chop_image(_canvas, _layer, blend_mode, opacity)
_canvas.paste(_comp, mask=_mask)
ret_images.append(pil2tensor(_canvas))
log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish')
return (torch.cat(ret_images, dim=0),)