Noisy Latent Image¶
Documentation¶
- Class name:
BNK_NoisyLatentImage
- Category:
latent/noise
- Output node:
False
The Noisy Latent Image node generates a tensor of random noise as latent images, configurable by dimensions and batch size, and intended for use in generative models where noise serves as a foundational element for image synthesis.
Input types¶
Required¶
source
- Specifies the computational resource (CPU or GPU) to be used for generating the noise, affecting the execution speed and efficiency.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
seed
- Determines the initialization value for random number generation, ensuring reproducibility of the noise patterns.
- Comfy dtype:
INT
- Python dtype:
int
width
- Sets the width of the generated latent images, influencing the dimensions of the output noise tensor.
- Comfy dtype:
INT
- Python dtype:
int
height
- Sets the height of the generated latent images, influencing the dimensions of the output noise tensor.
- Comfy dtype:
INT
- Python dtype:
int
batch_size
- Defines the number of latent images to generate in a single batch, allowing for batch processing of noise generation.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
latent
- Comfy dtype:
LATENT
- The generated tensor of random noise, structured as latent images for further processing or model input.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class NoisyLatentImage:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"source":(["CPU", "GPU"], ),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "create_noisy_latents"
CATEGORY = "latent/noise"
def create_noisy_latents(self, source, seed, width, height, batch_size):
torch.manual_seed(seed)
if source == "CPU":
device = "cpu"
else:
device = comfy.model_management.get_torch_device()
noise = torch.randn((batch_size, 4, height // 8, width // 8), dtype=torch.float32, device=device).cpu()
return ({"samples":noise}, )