ModelMergeSDXLDetailedTransformers¶
Documentation¶
- Class name:
ModelMergeSDXLDetailedTransformers
- Category:
advanced/model_merging
- Output node:
False
This node specializes in merging two models with a focus on detailed transformer block adjustments. It allows for fine-tuning of the merging process by providing extensive control over transformer block parameters, enabling precise model customization and optimization.
Input types¶
Required¶
model1
- The first model to be merged. It serves as the base model for the merging process.
- Comfy dtype:
MODEL
- Python dtype:
comfy.model_base.Model
model2
- The second model to be merged. Its parameters are used to augment or modify the first model based on the specified merging strategy.
- Comfy dtype:
MODEL
- Python dtype:
comfy.model_base.Model
time_embed.
- Adjusts the time embedding layer's contribution to the merged model, allowing for temporal aspects of the models to be fine-tuned.
- Comfy dtype:
FLOAT
- Python dtype:
float
label_emb.
- Adjusts the label embedding layer's contribution to the merged model, enabling customization of how label information influences the merged model.
- Comfy dtype:
FLOAT
- Python dtype:
float
input_blocks.i.j.
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.norm1
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn1.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn1.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn1.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn1.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.ff.net
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.norm2
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn2.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn2.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn2.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn2.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.norm3
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.
- Adjusts the contribution of the i-th middle block in the merged model, where i ranges from 0 to 2. This enables fine-tuning of the model's intermediate processing stages.
- Comfy dtype:
FLOAT
- Python dtype:
float
middle_block.i.transformer_blocks.j.norm1
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn1.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn1.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn1.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn1.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.ff.net
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.norm2
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn2.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn2.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn2.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn2.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.norm3
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.norm1
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn1.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn1.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn1.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn1.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.ff.net
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.norm2
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn2.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn2.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn2.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn2.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.norm3
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
out.
- Adjusts the final output layer's contribution to the merged model, enabling customization of the model's final output characteristics.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
model
- Comfy dtype:
MODEL
- The resulting model after merging, incorporating adjustments from both input models and specified transformer block parameters.
- Python dtype:
comfy.model_base.Model
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ModelMergeSDXLDetailedTransformers(comfy_extras.nodes_model_merging.ModelMergeBlocks):
@classmethod
def INPUT_TYPES(s):
arg_dict = { "model1": ("MODEL",),
"model2": ("MODEL",)}
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
arg_dict["time_embed."] = argument
arg_dict["label_emb."] = argument
transformers = {4: 2, 5:2, 7:10, 8:10}
transformers_args = ["norm1", "attn1.to_q", "attn1.to_k", "attn1.to_v", "attn1.to_out", "ff.net", "norm2", "attn2.to_q", "attn2.to_k", "attn2.to_v", "attn2.to_out", "norm3"]
for i in range(9):
arg_dict["input_blocks.{}.0.".format(i)] = argument
if i in transformers:
arg_dict["input_blocks.{}.1.".format(i)] = argument
for j in range(transformers[i]):
for x in transformers_args:
arg_dict["input_blocks.{}.1.transformer_blocks.{}.{}".format(i, j, x)] = argument
for i in range(3):
arg_dict["middle_block.{}.".format(i)] = argument
if i == 1:
for j in range(10):
for x in transformers_args:
arg_dict["middle_block.{}.transformer_blocks.{}.{}".format(i, j, x)] = argument
transformers = {3:2, 4: 2, 5:2, 6:10, 7:10, 8:10}
for i in range(9):
arg_dict["output_blocks.{}.0.".format(i)] = argument
t = 8 - i
if t in transformers:
arg_dict["output_blocks.{}.1.".format(i)] = argument
for j in range(transformers[t]):
for x in transformers_args:
arg_dict["output_blocks.{}.1.transformer_blocks.{}.{}".format(i, j, x)] = argument
arg_dict["out."] = argument
return {"required": arg_dict}