pipeKSamplerAdvanced v1 (Legacy)¶
Documentation¶
- Class name:
ttN pipeKSamplerAdvanced
- Category:
🌏 tinyterra/legacy
- Output node:
True
This node is designed for advanced sampling in generative models, incorporating various techniques such as LoRA adjustments, noise control, and optional model components to refine and generate high-quality samples. It supports complex workflows including image upscaling, embedding workflows, and handling of optional inputs for enhanced flexibility and customization in sample generation.
Input types¶
Required¶
pipe
- unknown
- Comfy dtype:
PIPE_LINE
- Python dtype:
unknown
lora_name
- Specifies the name of the LoRA model to be used for adjustments, enhancing the control over the sampling process.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
lora_model_strength
- Determines the strength of the LoRA model adjustments, allowing for fine-tuning of the model's behavior during sampling.
- Comfy dtype:
FLOAT
- Python dtype:
float
lora_clip_strength
- Specifies the strength of the LoRA clip adjustments, impacting the final visual quality of the samples.
- Comfy dtype:
FLOAT
- Python dtype:
float
upscale_method
- Specifies the method used for upscaling the generated samples, affecting the resolution and clarity.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
factor
- The factor by which the image is upscaled, directly influencing the output image size.
- Comfy dtype:
FLOAT
- Python dtype:
float
crop
- Determines if and how the output images are cropped, affecting the final composition and aspect ratio.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
sampler_state
- Represents the state of the sampler, including configurations and parameters for the sampling process.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
add_noise
- Controls whether noise is added to the sampling process, with options to enable or disable noise, affecting the texture and details of the generated samples.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
steps
- Defines the number of steps to perform in the sampling process, directly impacting the quality and characteristics of the generated samples.
- Comfy dtype:
INT
- Python dtype:
int
cfg
- Configuration setting for the sampling process, providing a means to customize various aspects of sample generation.
- Comfy dtype:
FLOAT
- Python dtype:
float
sampler_name
- Identifies the specific sampler to be used, allowing for selection among multiple sampling strategies.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
scheduler
- Specifies the scheduler for controlling the sampling process, aiding in the management of sampling steps and their execution.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
start_at_step
- unknown
- Comfy dtype:
INT
- Python dtype:
unknown
end_at_step
- unknown
- Comfy dtype:
INT
- Python dtype:
unknown
return_with_leftover_noise
- Controls whether the final output includes leftover noise, affecting the visual texture of the samples.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
image_output
- Determines how the output images are handled, including options for hiding or saving the generated samples.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
save_prefix
- Prefix for saving the generated samples, facilitating organization and retrieval of output files.
- Comfy dtype:
STRING
- Python dtype:
str
Optional¶
noise_seed
- The seed used for generating noise, ensuring reproducibility and consistency in the noise added to the samples.
- Comfy dtype:
INT
- Python dtype:
int
optional_model
- Specifies an optional model to be used in the sampling process, allowing for customization and experimentation.
- Comfy dtype:
MODEL
- Python dtype:
str
optional_positive
- Optional positive conditioning to guide the sampling towards desired attributes.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
optional_negative
- Optional negative conditioning to steer the sampling away from undesired attributes.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
optional_latent
- Specifies an optional latent input for the sampling process, providing a starting point or influence.
- Comfy dtype:
LATENT
- Python dtype:
str
optional_vae
- Specifies an optional VAE model to be used, affecting the encoding and decoding of samples.
- Comfy dtype:
VAE
- Python dtype:
str
optional_clip
- Specifies an optional CLIP model for additional guidance or conditioning in the sampling process.
- Comfy dtype:
CLIP
- Python dtype:
str
xyPlot
- Optional XY plot data for visualization or analysis purposes during the sampling process.
- Comfy dtype:
XYPLOT
- Python dtype:
str
Output types¶
pipe
- Comfy dtype:
PIPE_LINE
- The pipeline configuration used for the sampling process.
- Python dtype:
str
- Comfy dtype:
model
- Comfy dtype:
MODEL
- The model used in the sampling process.
- Python dtype:
str
- Comfy dtype:
positive
- Comfy dtype:
CONDITIONING
- Positive conditioning data used to guide the sampling process.
- Python dtype:
str
- Comfy dtype:
negative
- Comfy dtype:
CONDITIONING
- Negative conditioning data used to steer the sampling away from undesired attributes.
- Python dtype:
str
- Comfy dtype:
latent
- Comfy dtype:
LATENT
- The latent representation of the sample.
- Python dtype:
str
- Comfy dtype:
vae
- Comfy dtype:
VAE
- The VAE model used in the sampling process, if applicable.
- Python dtype:
str
- Comfy dtype:
clip
- Comfy dtype:
CLIP
- The CLIP model used for additional guidance or conditioning, if applicable.
- Python dtype:
str
- Comfy dtype:
image
- Comfy dtype:
IMAGE
- The final image output from the sampling process.
- Python dtype:
str
- Comfy dtype:
seed
- Comfy dtype:
INT
- The seed value used for reproducibility in the sampling process.
- Python dtype:
int
- Comfy dtype:
ui
- Provides a user interface component for visualizing the generated samples, enhancing the interaction and presentation of results.
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ttN_pipeKSamplerAdvanced:
version = '1.0.5'
upscale_methods = ["None", "nearest-exact", "bilinear", "area", "bicubic", "lanczos", "bislerp"]
crop_methods = ["disabled", "center"]
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {"required":
{"pipe": ("PIPE_LINE",),
"lora_name": (["None"] + folder_paths.get_filename_list("loras"),),
"lora_model_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_clip_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"upscale_method": (cls.upscale_methods,),
"factor": ("FLOAT", {"default": 2, "min": 0.0, "max": 10.0, "step": 0.25}),
"crop": (cls.crop_methods,),
"sampler_state": (["Sample", "Hold"], ),
"add_noise": (["enable", "disable"], ),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
"image_output": (["Hide", "Preview", "Save", "Hide/Save"],),
"save_prefix": ("STRING", {"default": "ComfyUI"})
},
"optional":
{"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"optional_model": ("MODEL",),
"optional_positive": ("CONDITIONING",),
"optional_negative": ("CONDITIONING",),
"optional_latent": ("LATENT",),
"optional_vae": ("VAE",),
"optional_clip": ("CLIP",),
"xyPlot": ("XYPLOT",),
},
"hidden":
{"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO", "my_unique_id": "UNIQUE_ID",
"embeddingsList": (folder_paths.get_filename_list("embeddings"),),
"ttNnodeVersion": ttN_pipeKSamplerAdvanced.version},
}
RETURN_TYPES = ("PIPE_LINE", "MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "CLIP", "IMAGE", "INT",)
RETURN_NAMES = ("pipe", "model", "positive", "negative", "latent","vae", "clip", "image", "seed", )
OUTPUT_NODE = True
FUNCTION = "sample"
CATEGORY = "🌏 tinyterra/legacy"
def sample(self, pipe,
lora_name, lora_model_strength, lora_clip_strength,
sampler_state, add_noise, steps, cfg, sampler_name, scheduler, image_output, save_prefix, denoise=1.0,
noise_seed=None, optional_model=None, optional_positive=None, optional_negative=None, optional_latent=None, optional_vae=None, optional_clip=None, xyPlot=None, upscale_method=None, factor=None, crop=None, prompt=None, extra_pnginfo=None, my_unique_id=None, start_at_step=None, end_at_step=None, return_with_leftover_noise=False):
force_full_denoise = True
if return_with_leftover_noise == "enable":
force_full_denoise = False
disable_noise = False
if add_noise == "disable":
disable_noise = True
out = ttN_TSC_pipeKSampler.sample(self, pipe, lora_name, lora_model_strength, lora_clip_strength, sampler_state, steps, cfg, sampler_name, scheduler, image_output, save_prefix, denoise,
optional_model, optional_positive, optional_negative, optional_latent, optional_vae, optional_clip, noise_seed, xyPlot, upscale_method, factor, crop, prompt, extra_pnginfo, my_unique_id, start_at_step, end_at_step, force_full_denoise, disable_noise)
return out